Part Reuse vs. New Parts

PSMC Spring Meeting 24-26 April 2012

LMI

Tools Subcommittee Breakout Discussion

Objectives:

- Address CPC cost savings/avoidance questions (Ed Gladue)
 - Do SD-19 average savings apply the part reuse?
- Confirm validity of SD-19 average savings (\$27,500)
 - Is \$27,500 the right number?
 - Do average savings apply to all parts (simple and complex)?
- Advance PSMC Business Case development
- Augment Case for Standardization Document
- Develop White Paper on Reuse to support CPC team arguments

Shipyard Management's Challenge

- Common Parts Catalog (CPC)
 - CPC enables and encourages part reuse
 - Need to understand potential for major saving from parts reuse
 - Need to calculate or estimate savings
- Shipyard Upper Management
 - Management questions validity of SD-19 average savings (\$27.5K)
 - Management has challenged CPC Team to prove or defend estimated savings
 - CPC Team needs to convince upper management that savings are real

Benefits of Part Reuse

- SD-19 Cost Benefit Analysis
 - Average Cost of Adding a Part into a System
 - \$27,500
- Challenge
 - Is this number valid when a part from one class of ship is reused on another class?
 - Is such reuse the same as not adding a part to the system?
- Examples (from DSP Case Studies)
 - Virginia Class Submarine Program
 - Hull, Mechanical, and Electrical Equipment Standardization Program
 - NAVSEA Test Equipment Standardization

SD-19 Saving Breakdown

Area	Estimated Savings	Arguments	
Engineering and Design	\$12,600	Reuse eliminates the engineering and design costs Engineer selects best option from available preferred parts, larger selection	
Testing	\$1,000	Reuse eliminates most testing requirements (unique applications may need testing) Reused part is a proven part, reliability is known, maintainability understood	
Manufacturing	\$2,400	Manufacturing costs are amortized and in the price of the part Manufacturing costs unique to new parts are avoided, setup, QC process, raw materiels	
Purchasing	\$5,200	Reuse eliminates most new part purchasing costs Sources are established, often contract are in place, availability is immediate	
Inventory	\$1,200	Reuse eliminates all inventory cost of a new part added to inventory NSNs assigned, supply chain established, storage in place	
Logistics Support	\$5,100	Reuse eliminates most logistics support costs Training in place, maintenance capability established, ILS is understood	

Part Acquisition / Selection Options

- Design a new part for the application
 - Highest cost, highest risk, longest lead time...
- Find a part in the marketplace catalog, online, etc.
 - Market research, uncertainty, procurement, testing...
 - Random chance of selecting a preferred part
- Conduct a best value source selection process
 - RFP, proposals, source selection, FAR requirements
 - Random chance of selecting a preferred part
- Select a part from a known application (e.g. Virginia Class)
 - Preferred part, proven part, single class option, perhaps not best part
- Select a part from a preferred part database (CPC)
 - Preferred part, proven part, many Fleet-wide options, select best option

Submarine Standardization and Part Reuse

- Seawolf Class Submarine (cancelled, only 3 built)
 - Bill of Materials = 67,834 Parts
 - No Standardization, Multiple Part Numbers Same Parts
- Virginia Class Submarine
 - Bill of Materials = 27,014 Parts \$789M Cost Avoidance
 - Standardization, Part Reuse,
- Jimmy Carter Class Submarine
 - Bill of Materials = 8,907 Parts \$72M Cost Avoidance
 - Formal Standardization Criteria, Part Reuse
 - 4,005 (45%) Parts Reused from Virginia
- SSGN Class Submarine
 - Bill of Materials = 6,968 Parts \$80M Cost Avoidance
 - 5,789 (65%) Parts Reused from Virginia

Hull, Mechanical & Electrical (HM&E) (Fleet repairable items)

- 180,000 different types of HM&E equipment (1988)
 - Each with unique parts lists (APLs), tech manuals, training
 - 20% of items were one-of-a-kind within the Fleet
- 8,700 new HM&E items added each year
- 28,000 new NSNs each year
 - 90% from ship construction, conversion, depot maintenance
- 80% of HM&E items installed on 3 or fewer ships
- •
- 150,000 different types of HM&E (2000) down 30,000
 - \$15 billion savings
- 2000 new HM&E items added each year down 6,700

HM&E Standardization

- HM&E Equipment Data Research System (HEDRS)
 - 150,000 non-developmental items
- Navy Standardization Guide (NSG)
 - HM&E standardization policies
- Amphibious Assault Ship Class Standardization/Reuse
 - 40% of HM&E used on LHD-1 was not in Navy inventory

SHIP	Total APLs	Class Unique APLs	Fleet Unique APLs
LHD-1	5,143	810	252
LHD-7	4,437	193	36
Reduction	14%	76%	86%

Savings / Cost Avoidance of Reuse

- Navy calculated initial introduction of a new pump
 - \$63,000 (excluding training)
- Navy estimated average ILS cost for introducing one new piece of HM&E equipment
 - \$173,851 (including training, provisioning, maintenance...
- Introducing 2000 fewer items = \$348M

Plus:

- Improved operational readiness
- Reduced life cycle cost
- Better availability, reliability, interchangeability, maintainability, quality, safety, smaller footprint...

NAVSEA Test Equipment Standardization

(Test, Measurement, & Diagnostic Equipment (TMDE)

- 312 different models of TMDE (2002) (oscilloscopes & digital multimeters)
- 71 different models of TMDE addressing one measurement / requirement category
- 13 measurement / requirement categories
 - Many TMDE items were obsolete
 - Short calibration cycles
 - Frequent maintenance and repair
- ------- Savings
- Team reduced 312 models to 34 by standardizing \$45.3 M
- Team reduced 13 categories to 3 by standardizing (\$145K per model)
- Team reduced 71 models to 6 by standardizing

Discussion Objectives

- The Case for Standardization A and DSP Award Winners
 - Objective DSP 'Case for Standardization' document
 - Single existing document based on past DSP case studies, articles, and award winners integrated into coherent picture (many short stories)
 - Additional material for inclusion in the existing case
- Part Reuse White Paper
 - Objective Stand alone white paper and/or article
 - Ammunition for CPC Team
 - Persuasive to shipyard management
- PSMC Business Case
 - Objective Create useful input, accelerate development

