3.3.12 CONTRACT CODE MASS CHANGE ERROR NOTIFICATIONS (RESERVED)

3.3.13 TRANSFER WORKLOAD OF DEPARTING MANAGER (RESERVED)

3.3.14 LEADER MANAGE INFORMATION FILE (RESERVED)

3.3.15 PCMF IMPAC NOTIFICATION (RESERVED)

3.3.15.1 PCMF PPSL INTERROGATION ERRORS

SCREENS

 FrmPCMF_PPSLInterrogationErrors

USES

 This form is only available to users with an assigned function of SU MPCAG DIVISION CHIEF (SU), MANAGER (MA), LEADER (LE), BRANCH CHIEF (SM).

Screen FrmPCMF_PPSLInterrogationErrors

 a. Process Descriptions:

 (1) This form provides a listing of the PCMF PSS: Interrogration Errors. The content of the form varies depending on the function codes assigned to the person signed on to the system. Those assigned SU will see all the PCMF PSSL Interrogation Errors in the ppsl_err table at the user site. The authorized users with other function codes assigned will see only a portion of the records in the ppsl_err table. The user with Branch Chief (SM) function assigned will see records that the first four positions of the office of primary interest match the first four positions of their user symbol. The user with Manager (MA) function will see only those records that their symbol matches the entire office of primary interest symbol. The user with Leader (LE) function will see those records that they are the chief of the user_symbol for the evaluation matching the opi in the user_ref table.

 (2) This form is called by the menu. The calling program (MDIPartsControl) runs function ErrorListing() in this form which returns an integer to the menu program. ErrorListing() returns zero when there are records in the request table and -1 when there are no records in the table to be displayed. The Menu program only shows the frm PCMF PSSLInterrogationErrors form when a zero is returned.

 (3) This form loads each selected record from the ppsl_err table into a format that puts data into three lines on the MSFlexGrid based on the ty_rqst field. If the user is a SU or SM or LE, the opi is presented in the upper light corner of the form. The ty_rqst is shown with the format for a row on the MSFlexGrid in the following table.

 TY_RQST FIELD RELATED TO ROW FORMAT TABLE

	TY_RQST
	ROW

	2A, 4A, JA
	 Full Summary Error Msg: err_mesg

 Select Start: sel_strt

 Select End: sel_end

	2C, 4C
	Branch Error Msg: err_mesg

Select Start: sel_strt

 Select End: sel_end

	2D,4D, JE
	FSC Error Msg: err_mesg

Select Start: sel_strt

 Select End: sel_end

	2E, 4E, JC
	Service Code: Error Msg: err_mesg

Select Start: sel_strt

 Select End: sel_end

	2F, 4F, JD
	 Service Activity Code: Error Msg: err_mesg

Select Start: sel_strt

 Select End: sel_end

	2H, 4H
	MPCAG Manager : Error Msg: err_mesg

Select Start: sel_strt

 Select End: sel_end

	2I, 4I
	Evaluator OPI: ofc_prim_intrst Error Msg: err_mesg

Select Start: sel_strt

 Select End: sel_end

	45
	FSC: Occurrences: Error Msg: err_mesg

Select Start: sel_strt

 Select End: sel_end

	75
	Military Part Number Survey. Error Msg: err_mesg

Select Start: sel_strt

 Select End: sel_end

	76
	Commercial Part Number Survey: Error Msg: err_mesg

Select Start: sel_strt

 Select End: sel_end

	16, 2G,71,4G,DL, JB, J1, J2
	Contract CD: contr_cd BPC Id: basic_pkg_ctl_id Error Msg: err_mesg

Select Start: sel_strt Copies: no_copys Tape Density: tape_dens_ind Select End: sel_end Print Ind: prt_ind Feedback/Tape Ind: fdbck tape_ind

 (4) Also, a Record Number (Rec No) is assigned to each group of three lines and a total count of the records is presented in the upper left corner of the form.

 (5) There are three ways that a user can select a PCMF PSSL Interrogation Error for further processing.

 (a) Enter number to Select - The user types the Rec No that relates to an error record in the MSFlexGrid. The record (three rows) in the grid are highlighted and move to the top of the grid. To accept the entry, the user then either depresses ENTER or clicks the OK command button to proceed with processing the related evaluation in the FrmPCMF_PPSLInterrogationErrors form.

 (b) Single-Click a row in MSFlexGrid - The user clicks with the mouse a row in the grid with the desired control number. The three rows are highlighted on the form along with the Rec No being placed in the text box set up for the user to type the Rec No. To accept selection, the user then may either depress ENTER or click the OK command button to proceed with processing the related error record.

 (c) Double-Click a row in MSFlexGrid - The user double-clicks with the mouse on a desired row in the grid. The selected three rows will be highlighted. Further action by the user to accept the selection is not necessary; the row is accepted for further processing of the related error. Once the user selects an error record, a message asks DELETE THIS PCMF PSSL NOTIFICATION? If the user responds with yes, then the record is deleted in the ppsl_err table and deleted from the MSFlexGrid, a no response brings the user to the MSFlexGrid with no changes made to the table or the MSFlexGrid.

 b. Command Buttons:

 (1) OK - Search MSFlexGrid lisitn for error that matches the row number entered in text box.

 (2) Cancel - Closes the window without further processing.

3.4 EVALUATION WORKLOAD (RESERVED)

3.5 FILE MAINTENANCE

 MAINTENANCE AND INTERROGATION of the following data base tables are available to the users on the mid-tier: CAGE, COMMENT GLOSSARY, DMS, EIC, ENVIRONMENTAL CODES, FSC, GIDEP, IMPAC, INACTIVE FOR NEW DESIGN, PROBLEM PART. Some maintenance is then routed to another level for approval before uploading to the mainframe.

3.5.1 CAGE MAINTENANCE AND INTERROGATION

3.5.2 COMMENT GLOSSARY

3.5.3 DMS MAINTENANCE AND INTERROGATION

3.5.4 DOCUMENTS CHECKLISTS

3.5.5 EIC MAINTENANCE AND INTERROGATION

3.5.6 ENVIRONMENTAL CODES MAINTENANCE AND INTERROGATION

3.5.7 FSC MAINTENANCE AND INTERROGATION

3.5.8 GIDEP MAINTENANCE AND INTERROGATION

3.5.9 IMPAC MAINTENANCE AND INTERROGATION

3.5.10 INACTIVE FOR NEW DESIGN MAINTENANCE AND INTERROGATION

3.5.11 PROBLEM PART MAINTENANCE AND INTERROGATION

3.5.12 SERVICE ACTIVITY CODE - (RESERVED)

3.5.1 CAGE MAINTENANCE AND INTERROGATION

PURPOSE:

 a. The purpose of these forms is to view and maintain the contents of the Cage_ref tables.

 b. Maintenance activities are Add, Change, and Delete.

 c. Anyone may interrogate the Cage_ref table.

 d. Maintenance is limited to EV, EN, SC, ME, and SU permission levels.

FUNCTIONALITY:

 a. There are five buttons on the form. Add, Change, Delete, OK, and Cancel. Only the Cancel and OK buttons are displayed for both Interrogations and Maintenance. The maintenance buttons are displayed after the form has been loaded with data.

 b. The user will select Interrogation for the menu. As the form is being loaded, the data contained in the Cage_ref table is displayed. There are two fields to view: CAGE and PART_NO_TY. PART_NO_TY may contain only 1 of 2 values, M or I. The records are displayed in CAGE order and the rows are numbered.

 c. The display is accomplished using GetData function that is used in frmInterrCage.LoadTheForm. The function is called from the menu option that also sets a value of M or I to mstrOption. M is for maintenance and I is for Interrogation.

 d. Maintenance occurs on one of two levels: Updating the Cage_ref directly and adding the modified record to the Cage_upd table for subsequent approval. The permission levels determine adding records to these tables. ME and SU may update directly; EV, EN, and SC must place their modifications in Cage_upd. If the user has updated the Cage_ref directly, there is a record placed in the Upload table in proper format for mainframe use.

 e. Maintenance of any kind is prohibited if there is a record in the Cage_upd table containing the value of the CAGE under consideration. This function is named CheckForPendingAction and is found in frmMaintCageInput.

 f. Deleting a record takes place from the grid. Add and Change requires the use of frmMaintCageInput. A Change only requires the user to change the value of PART_NO_TY by the use of option buttons. For an Add, PART_NO_TY defaults to the value of Mil.

 g. Additions and modifications to these tables are done via PutData function.

 h. CheckUserFunctions is the function used to determine the users highest permission level.

 (1) The functions for the Grid Forms:

 (a) AddNewCageItem: This function is called from cmdAdd_Click. It examines the permission level of the user. Sets the value of mintAddChangeDelete if the user has maintenance privileges, and displays the Input Form.

 (b) ChangeCageItem: This function is called by cmdChange_Click. The only value that may be changed in the CAGE_Ref table is the PART_NO_TY; therefore, the CAGE INPUT form is displayed with the number field disabled. The true/false value of the option buttons on the input form is translated using M as true and I as false. It sets the value of the public variable frmCageInput.mintAddChangeDelete to 2.

 (c) DeleteCageItem: Deletes take place without the graphical intervention of the CAGE INPUT form. It sets the value of frmCageInput.mintAddChangeDelete to 3. This procedure tests permission levels to determine whether or not the record should be directly deleted or placed into CAGE_UPD for review. Putdata and frmCageInput. CageUpdateFile are called to perform the conditional deletes.

 Another important feature of DeleteCageItem is to maintain the mintGridRowsArray for deleted items. Because the array is so small, no sorting is done. The method to examine the array is to use a For/Next loop imbedded into another For/Next loop. Once the element to be deleted is found, it is replaced by the one below it, and then all the rest are MOVED up one by one. The only hitch is the time the last element is to be deleted. It is just deleted using the Redim Preserve command.

 (d) FindTheRowWeWereOn: This procedure uses the module level variable to determine just where to change the M or I value for a particular CAGE. Spins through the TextMatrix values of the CAGE and declares the row containing it to be the top row and the selected row.

 (e) LoadTheForm: Gathers the data before the frmInterrCage is shown. If the search is successful, the grid is formatted and loaded. MintGridRowsArray is created and filled. There is a final determination of Maintenance or Interrogation and the form’s caption is assigned conditionally.

 (f) NumberRows: Renumbers the rows whenever the quantity of records has been changed. It is called by the form’s activate and DeleteCageItem. It sequentially renumbers the rows after an ascending sort.

 1. The click of the grid will cause PerformSort to execute.

 2. The activate of the form will perform various house cleaning tasks if the user has called the frmMaintCageInput form. Conditionally adds a new record or changes the Indicator. It does nothing if the user has deleted a record or is not in maintenance mode.

 (2) The functions for the Input Forms:

 (a) CageArrayMaint: Adds a new element to mintGridRowsArray after an add. It is called by cmdOK.

 (b) CageUpdateFile: Conditionally adds a record to either the Upload file or the Cage_upd file and makes use of PutData.

 (c) CheckForPendingAction: This function is called prior to every maintenance function’s recording of data. If there is a record containing the CAGE being modified, added, or deleted, the user will be so informed and the procedure will not continue.

 (d) GetPermission: Determines whether or not the user has privileges to either modify directly or subordinately.

 (e) cmdOK: Reads the values in the input form and then records in the Oracle tables. Makes use of CageUpdateFile. Determines whether or not the user is trying to enter an already existing CAGE by the use of mintGridRowsArray contents. Calls CheckForPendingAction.

INCLUDED FORMS:

 FrmInterrCage

 frmMaintCageInput

TABLES:

 Cage_ref

 Cage_upd

 Upload

3.5.2 COMMENT GLOSSARY

PURPOSE:

 a. The purpose of these forms is to view and maintain the contents of the Comment_ref table. The table is limited to 200 records.

 b. Maintenance activities are Add, Change, and Delete.

 c. Anyone may interrogate the Comment_ref table.

 d. Maintenance is limited to EV, EN, SC, RM, MA, LE, SM, and SU permission levels.

 e. Comments with numbers ranging from 1 through 89 and 100 through 200 may be maintained by EV, EN, SC, RM, and SU. Comments with numbers ranging from 90 through 99 may be maintained by MA, LE, SM, and SU.

FUNCTIONALITY:

 a. FrmInterrCommentGlossary is the main form. It is entered by a call from frmInterrCommentRange. FrmMaintCommentInput is only used during Add and Change.

 b. Sorting takes place when the user clicks on a column header. The first sort is from ascending to descending. Each subsequent sort is toggled from ascending to descending and vice versa.

 c. There are four buttons on the form. Add, Change, Delete, and Cancel. Only the Cancel button is displayed for both Interrogations and Maintenance. The maintenance buttons are displayed after the form has been loaded with data.

 d. The user will select Interrogation from the menu. As the form is being loaded, the data contained in the Comment_ref table is displayed. There are two fields to view: CMNT_NO and CMNT. (The CMNT_NO field is an editable field during maintenance and not merely a record number indicator. There is no record number search on this form.)

 e. The frmInterrCommentRange form permits the user to collect data into frmInterrComment based on a range of data. There are four buttons on the frmInterrCommentRange form: Range, Specific, OK, and Cancel. If the user wants to see only one comment, he will depress Specific button or merely enter one comment number and depress OK. If he wants to see a range, he will depress Range button and enter more than one comment number to view his selected range. The selection will not fail because there are no comments with the beginning and/or ending comment numbers. The selection will not fail because he enters the request in reverse order.

 f. Even though he says he wants a range, if he only enters a comment number in one of the fields, a comment with the number entered will be selected if it exists.

 g. If only one comment number is entered and it does not exist and the user has maintenance privileges, the form will ask if he wishes to add the comment. At that point, frmMaintCommentInput will be displayed with the new comment number ready for the user to continue adding the new comment. If the user does not have maintenance privileges, he will be notified that there is no comment with that number in existence.

 h. The frmInterrCommentRange contains a function named GatherData which performs a GetData function to get the data from the Cmnt_ref table based on the user’s request.

 i. The display is accomplished using GetData function, which is used in frmInterrCommentRange. FillGrid.

 j. At the time the Comment Glossary is called from the menu, the value of M or I is set to mstrOption. M is for maintenance and I is for Interrogation.

 k. Maintenance occurs on one of two levels: Updating the Cmnt_ref directly and adding the modified record to the Cmnt_upd table for subsequent approval. Adding records to these tables is determined by the permission levels. SU may update directly all comments.

 l. EN, SC, and RM may update comments in ranges 1 through 89 and 100 through 200 directly. EV may perform maintenance subject to subsequent approval.

 m. If the user has updated the Cmnt_ref directly, there is a record placed in the Upload table in proper format for mainframe use.

 n. LE and SM may update comments in the range of 90 through 99 directly. MA may perform maintenance subject to subsequent approval.

 o. All records that are subject to approval are placed in Cmnt_upd table.

 p. Maintenance of any kind is prohibited if there is a record in the Comment_upd table containing the value of the CMNT_NO under consideration. This function is named CheckForPendingAction and is found in frmMaintCommentInput.

 q. Deleting a record takes place from the grid.

 r. Add and Change requires the use of frmMaintCommentInput. There are 2 buttons on the form. One is captioned OK and the other is captioned Cancel. The OK button is used to save the user’s additions and changes; the Cancel button merely unloads the form. A Change only allows the user to change the contents of the comments; no changes to the comment number are allowed. To change a comment number, the user will have to perform an add and a delete.

 s. When adding, the user will notice a slight delay in the frmMaintCommentInput’s response to accepting keystrokes into the comment text box. That is because the form is checking to see if the user is adding an already existing comment or adding a comment that has been recorded in Cmnt_upd and has yet to be approved.

 t. Additions and modifications to these tables are done via PutData function.

 u. CheckUserFunctions is the function used to determine the users highest permission level.

 (1) The functions for frmInterrCommentRange:

 (a) EnableGoButton: Enables the search button. Sets the default property. Checks the value of the highest comment number. The highest comment number can only be 200. It is called by txtLastInRange_Change, cmdRange_Click, and txtFirstInRange_Change.

 (b) EstablishPermission: Establishes the permission level of the user. Called by GatherData.

 (c) GatherData: Loads the data. Several scenarios have been anticipated. The user may have the first value lower than the second value. There may only be a second value and not a first value. The user may have used the value of 0 in either of the range values. Oracle does not seem to handle a 0.

 (d) If the user has entered a value that does not exist, then he will be asked if he would like to add the comment based on his permission level.

 (e) ChangeTicks is used because of the danger of using the tick (`).

 (f) GetTheToolTips: Since the form is multiuse, this sub provides for dynamic tool tip text assignment. lblLastInRange and lblFirstInRange get different assignments based on whether or not the user is in Maintenance or Interrogation mode.

 (g) PendingAction: Determines whether or not there is a record in the Comment_upd table with the same Comment as the one that is being changed, etc. Then the function returns True. Used only when the user has entered a comment number that does not exist and he wants to add it without going through the grid form first. The function here is redundant with one in the input form. It was added in this form because of screen flicker and delayed action by using the function in frmMaintCommentInput.

 (h) PrepareTheInputForm: After it has been determined that there is no existing record, the user has permission to add the number under consideration, and there is no pending action, the input form is displayed with the comment number.

 (i) cmdGo: Examines the data entered by the user. Prepares the input form or shows the glossary.

 (j) cmdRange_Click: If the user decides he wants to view more than one comment, he will have to depress the Range button. The code in the click shows all the elements on the form and calls GetTheToolTips and EnableGoButton.

 (k) cmdSpecific_Click: Shows only one of the text boxes so the user may select only one comment. Calls GetTheToolTips

 (2) The functions for frmInterrCommentGlossary:

 (a) Deletes are performed from within this form. Adds and Changes are performed from the frmMaintCommentInput form.

 (b) AddOneItem: Adds a new comment to the grid created in the frmMaintCommentInput form.

 (c) ChangeCommentItem: This is called by cmdChange_Click. Determines whether or not to show the frmCommentInput. Calls frmCommentInput. ShallWeShowTheForm and frmCommentInput. CheckForPendingAction. ShallWeShowTheForm determines whether or not the user has permission to change a comment.

 (d) Delete100: Deletes the comment directly from the Comment_ref table. Fixes up the grid. Called by DeleteComment.

 (e) DeleteComment: Called by cmdDelete_Click. Determines whether or not the user has permission to delete a comment. Also examines pending action. Either Delete100 or Update 101 is called. Also uses frmInterrCommentRange.EstablishPermission. This may be redundancy, but there was so much trouble determining the correct permission level that we had to go to this extreme.

 (f) EnableButtons: Enables or disables the command buttons. This function requires a parameter of true or false. Called by Activate, cmdAdd_Click, ChangeCommentItem.

 (g) FillGrid: Loads the grid with appropriate data.

 (h) Update101: Posts deleted comment DeleteComment to the Comment_upd table.

 (3) The functions for frmMaintCommentInput:

 (a) AddNewComment: Adds a new comment to the Comment Glossary. Examines the user’s permission level and compares it to the comment number. It is called by cmdOK_Click and frmInterrCommentRange. It is called by frmInterrCommentRange when the grid does not display.

 (b) AllowUserToGoOn: Examines the data as the user leaves the text box. It is called by txtCommentNo_LostFocus. Both CheckForPendingAction and CheckForExistingComment are called. It returns a true or a false. If it returns a false, then the user will be able to proceed; otherwise, the input form is unloaded.

 (c) CheckForExistingComment: Because the user may want to add a comment that is not on the grid, there is a need to determine if such a comment does not actually exist before it is added to the Comment Glossary. This function determines whether or not there is a record in the Comment_ref table with the same Comment as the one that is being added or changed. It returns a true or false.

 (d) CheckForPendingAction: Determines whether or not there is a record in the Comment_upd table with the same Comment as the one that is being changed, added, or deleted. If so, the function returns a True. frmMaintCommentInput.txtCommentNo_LostFocus, frmInterrCommentGlossary. ChangeCommentItem, frmInterrCommentGlossary. DeleteComment, frmInterrCommentGlossary.

 (e) CheckReturnCodes: Delivers to the user the correct message for the message box. It resets the value of gstrCommentSource. Makes sure that mstrCommentNo and mstrComment are set to the proper value at the finish of the function. If the 2 values are not set at this point, they will have an incorrect value if the user clicks on a record different from the one being modified.

 (f) GetPermission: Gets the permission level of the user. Several simultaneous permission levels are available for this form.

 (g) ShallWeShowTheForm: Determines whether or not the input form should be displayed. It is called by: cmdOK_Click and frmInterrCommentRange. The comment number being considered. Calls EstablishPermission. Returns a true or a false.

INCLUDED FORMS:

 frmInterrCommentGlossary

 frmInterrCommentRange

 frmMaintCommentInput

TABLES:

 Comment_ref

 Comment_upd

 Upload

3.5.3 DMS MAINTENANCE AND INTERROGATION

PURPOSE:

 a. The purpose of these forms is to view and maintain the contents of the DMS tables.

 b. Maintenance activities are Add, Change, and Delete.

 c. Anyone may interrogate the DMS table.

 d. Maintenance is limited to EV, EN, MD, and SU permission levels.

FUNCTIONALITY:

 a. Because the table may have up to 20,000 records, this form shows only one record at a time. Computer resources will not conveniently allow this many records in a grid.

 b. There are five buttons on the form. Add, Change, Delete, Search, and Cancel. Only the Search and Cancel buttons are displayed for both Interrogations and Maintenance. The Cancel button merely unloads the form. The Search button becomes enabled only at the time that the part.

 c. Subsequent searches are automatically initiated when the user depresses one of the maintenance buttons to save his data.

 d. Maintenance occurs on one of two levels: Updating the DMS table directly and adding the modified record to the DMS_upd table for subsequent approval. The permission levels determine adding records to these tables. MD and SU may update directly; EV and EN must place their modifications in DMS_upd for further review.

 e. Maintenance of any kind is prohibited if there is a record in the DMS _upd table containing the value of the part number plus the CAGE under consideration. This function is named CheckForPendingDMS.

 f. Deleting a record may be done only after there has been a successful search for it.

 g. Additions, deletions, and modifications to these tables are done via PutData function.

 h. CheckUserFunctions is the function used to determine the users highest permission level.

 i. Mandatory fields are Part Number, CAGE, DMS Case Number, and Date Entered. Date Entered is automatically entered during an add and cannot be changed during modifications. The field is locked.

 j. Interrogations will display the record at the time the user enters first the part number and the CAGE and depresses the Search button. All other fields are locked and are colored the background color of the form.

 k. FillUpDataArray: The function FillUpDataArray creates an array of current data contained in the text boxes. If the user tries to change a DMS part number and forgets, the this array and function CheckForChange will determine whether or not there has been a change and notifies the user if there has not been a change. It prevents the user from deleting a field and adding it back inadvertently.

 l. There are functions in the form named AddNewDMSCase, ChangeDMSCase, and DeleteDMS that perform their tasks based on the permission level. The Load of the form establishes the permission level.

 (1) The functions for frmInterrDMS:

 (a) AddNewDMSCase: Adds a new record to the DMS file or DMS_UPD depending upon permission level. Makes use of Putdata and ClearDataFields

 (b) ChangeDMSCase: Adds a modified record to the DMS file or update table. It is called by the click of command button collection.

 (c) CheckForChange: This function compares data entered into an array to the text boxes to see if there has been a change. It returns a True or a False. Called by the Change click event. The array is created by FillUpDataArray.

 (d) CheckForExistingDMS: Performs an SQL on the DMS table to see if there is an existing DMS. It is called by AddNewDMSCase.

 (e) CheckForPendingDMS: Performs an SQL on the DMS_UPD table to see if there is pending action on a DMS case. No action of any kind is permitted if a like record exists in the update table. It requires the part number and CAGE parameters. It returns one if there is pending action, zero OK to proceed, -1 Problem with this function. It uses GetData, ClearDataFields, UnlockDataFields. It is called by AddNewDMSCase, ChangeDMSCase, and DeleteDMS.,

 (f) CheckMandatoryFields: Determines whether or not the mandatory fields are completed. The part number, and CAGE, and DMS Case number must be filled in every time. The CAGE must have five places. The NSN, if used, must have thirteen numbers in the field. It is called whenever there is a change or an add. It returns an integer; 100 if all the fields are filled in and 0, 1, or 4 if they are not. Appropriate messages and then the cursor will be positioned in the lowest offending field.

 (g) ClearDataFields: Locks certain data fields after the data fields have been cleared. This procedure calls ClearOutData first. It is called by cmdSearch_Click in response to a message box. Called by cmdDelete_Click when there is pending action. It is called by CheckForPendingDMS if there is action pending. It is called by AddDMS when the entry has been completed.

 (h) ClearOutData: Called by the Load and ClearDataFields. It actually sets the values of the text boxes to nothing.

 (i) DeleteDMS: Deletes a DMS case, or posts a DMS case to DMS_UPD for subsequent approval. The action depends upon permission levels. Calls CheckForPendingDMS, ClearDataFields, and PutData.

 (2) DoEvalProcess:

 (a) FillUpDataArray: Creates an array of data values for all the data fields for use in CheckForChange. This is called by cmdSearch_click.

 (b) GetPermission: Determines whether or not the user has authority to perform the maintenance task. Used to determine if a record is passed to the Upload table or the Update table.

 (c) GetTheToolTips: Assigns the tool tip text. It is called by the Load.

 (d) LockData: Locks the (two) text boxes so that there is no editing. It is based on the value of mblnNoEdit that is set in the Load. If mstrOption is set to I then the user does not have editing privileges. In some instances, the text boxes have to be unlocked to have data displayed properly. In those cases, the text boxes will have to be locked at the time the data is finally viewed.

 (e) RetrieveData: This function gathers the data used displayed in the form. It returns the 1, 0, or -1 of the Getdata function. It is called by cmdSearch_Click. It requires the part number and cage values.

 (f) UnlockData: This function unlocks the text boxes at the top of the form. In order to display the data, the text boxes have to first be unlocked and then unlocked. It is called by cmdSearch_click.

 (g) UnlockDataFields: This function unlocks the text2 text boxes. It is called by CheckForPendingDMS in response to whether or not the user wants to clear out the text boxes.

 (h) WriteToUpload: Adds a record to the upload table. It is called by AddNewDMSCase, ChangeDMSCase, and DeleteDMS.

INCLUDED FORMS:

 frmInterrDMS

TABLES:

 DMS

 DMS_UPD

3.5.4 DOCUMENT CHECKLISTS

SCREENS:

 FrmChkFSC – Document Checklists

 FrmChecklist – Changes, depending on the screens function

 FrmChkComment

 FrmChkCreateAdd – Add to Checklist

USES:

 a. LblnLatest – Variable set when screen is called from Checklist.

 b. Maintenance – Delete menu option. Determines whether user wishes to delete an unfinished checklist.

 c. Public constants that provide captions on frmChecklist:

 (1) gconTitle = Document Evaluation Checklists - Titles.

 (2) gconHeader = Document Evaluation Checklists - Headers.

 (3) gconElement = Document Evaluation Checklists - Elements.

 (4) gconMaintHeader = Document Checklists Version Maintenance - Headers.

 (5) gconMaintTitle = Document Checklists Version Maintenance - Titles.

 (6) gconMaintFinalHeader = Document Checklists Version Maintenance - Final Review - Headers.

 (7) gconMaintHdrGeneral = Document Checklists - General Purpose.

 (8) gconMaintElement = Document Checklists Version Maintenance - Elements.

 (9) gconMaintElemRvw = Document Checklists Version Maintenance - Final Review - Elements.

 (10) gconCreateHdr = Document Checklists - Create - Headers.

 (11) gconCreateFHdr = Document Checklists - Create - Final Review - Headers.

 (12) gconCreateHdrGeneral = Document Checklists - Create - General Purpose - Headers.

 (13) gconCreateElement = Document Checklists - Create - Elements.

 (14) gconCreateFElement = Document Checklists - Create - Final Review - Elements.

 (15) gconCreateTitle = Document Checklists - Create - Titles.

 (16) gconDeleteTitle = Document Checklists - Delete - Titles.

 (17) gconDeleteHeader = Document Checklists - Delete - Headers.

 (18) gconDeleteElement = Document Checklists - Delete - Elements.

 (19) gconUpdateTitle = Document Checklists - Update - Titles.

 (20) gconUpdateHeader = Document Checklists - Update - Headers.

 (21) gconUpdateElements = Document Checklists - Update - Elements.

 (22) gconDisapproveTitle = Disapproved Document Checklists - Titles.

 (23) gconDisapproveHdr = Disapproved Document Checklists - Headers.

 (24) gconDisapproveElement = Disapproved Document Checklists - Elements.

 (25) gconDisapproveFHdr = Disapproved Document Checklists - Final Review - Headers.

 (26) gconDisapproveFElement = Disapproved Document Checklists - Final Review - Elements.

 d. Public arrays that hold the data needed for each screens:

 (1) chklDataArray – Holds the title data.

 (2) chklAllHeaderArray – Holds all headers in chklist_hdr.

 (3) chklHeaderArray – Holds only those headers in use in this checklist.

 (4) chklAllElementArray – Holds all elements in chklist_doc_element.

 (5) chklElementArray – Holds only those elements in use in this checklist.

 (6) chklNewElementArray – Holds all elements currently selected for this checklist – Used to add new elements to tables and delete previously selected elements, when the process button is clicked.

 (7) strCalledBy – Variable set in menu program for Checklist Maintenance or Inquiry menu options that determines which functions will be called when the user selects OK and which fields will show on the Document Checklist (frmChkFSC) form.

Screen 1 - FrmChkFSC

 This form is called by the menu. If it is called by the Checklist Maintenance or Inquiry menu options, strCalledBy is set to one of the following values:

 a. M = Called by Maintenance.

 b. I = Called by Inquiry.

 c. C = Called by Create.

 d. D = Called by Delete.

 e. FSC – This field is visible in all version of the frmChkFSC.

 f. Version – This field is visible only when the screen is called by the Inquiry menu option. This field can be left blank to list all Checklists for the entered FSC. If the user enters a number in this field, only the checklists that match both the FSC and Version will be listed.

 g. Checklist Maintenance – Delete - If the screen is called by the Delete menu option, the user is asked if they wish to delete an unfinished checklist.

 (1) If the user answers yes, all unfinished checklists for that FSC are listed in the next screen. LblnLatest is set to false.

 (2) If the user answers no, the latest version of the finished checklists for that FSC are listed in the next screen. LblnLatest is set to true.

 h. Cancel - Returns the user to the menu.

 i. OK - When the user clicks on the OK button, the program checks to see which menu option called the screen. The checklist information for the selected lists is stored in the chklist_doc table. These records are listed in a grid in the next screen.

 j. Checklist Maintenance – Delete.

 (1) If lblnLatest = true, the user wants to delete a finished checklist. The latest version of the finished checklists is stored in the chklist_latest table.

 (2) If lblnLatest = false, the user wants to delete an unfinished checklist. The unfinished checklist records are stored in the chklist_temp table. If no unfinished checklists are found, the user is asked if he wishes to create a new checklist. If the answer is yes, the program changes strCalledBy to C and runs the Checklist Maintenance Create process.

NOTE: The list of checklist records is then used to find the chklist_doc record.

 k. Checklist Maintenance – Create.

 The chklist_temp table is checked for any unfinished checklists for the selected FSC. If any exist, they are listed in a grid on the next screen (Checklist Title). If none exist, the user is asked to input a new title. A new checklist record is created and all headers are listed on the next screen (Checklist Header).

 l. Checklist Maintenance – Version Maintenance

 (1) The information selected is all unfinished checklists for the entered FSC. The unfinished checklist records are stored in the chklist_temp table.

 (2) The list of checklist records is then used to find the chklist_doc record.

 m. Checklist Inquiry

 A list of checklist records is taken from the chklist_doc table. If the version number is not entered, the list includes all checklists for the selected FSC. If the version number is entered, only those with the same version and FSC as entered by the user are selected. The list of checklist records is shown on the next screen.

Screen 2 - FrmChecklist

 The Document Checklist screen calls frmChecklist. Depending on which menu option it was called by, and the data available for that option, the caption is changed to one of the captions listed above. The caption is used to determine which buttons show, the captions on each button, and how the next screen is called. The captions on each button are used in combination with the screen’s caption to determine the process to perform when the button is clicked.

 a. CmdOK – The user selects a record by either double-clicking on the row of the grid, or entering a number into the text box ENTER NUMBER TO SELECT: See the following chart for details of processing.

 b. CmdAdd – The caption on this button is either Add or Reject.

 c. CmdDelete – Delete.

 d. CmdAction – The caption on this button is either Final, Process, or Delete.

 e. Cancel – This button returns the user to the previous screen, or the menu. Available on all screens.

NOTE: The following chart details the actions taken when each of the command buttons is clicked.

 FrmChecklist Used For Checklist Titles

[image: image1.png]
 FrmChecklist Used For Checklist Headers

[image: image2.png]
 FrmChecklist used for Checklist Elements

[image: image3.png]
 f. CmdCancel - Cancel – returns user to previous screen or menu. Visible on all screens.

Screen 3 - frmChkComment

 This screen is called by the RejectUpdate function (Checklist Update Title screen). When the user rejects a Checklist Update, a comment is required. When the form is unloaded, the program checks to be sure a comment was entered. If it was not, the Reject cannot be processed.

 a. Reject – When this button is clicked, the corresponding record for this Checklist is found in the chklist_hold_apprvl table, and the field disapproval_code is changed to D. The comments are posted to the chklist_hold_apprvl.comments field.

 b. Approve – When this button is clicked, the record is removed from the chklist_hold_apprvl table. The record that has been approved is removed from the grid.

 (1) Checklist Disapprovals

 Datasource = All records in chklist_hold_apprvl where routg = userid for that user, and disapproval_code = D.

This screen is called by the menu, using the GetUpdateDisapprovalData function to see if any updates are waiting for reprocessing. The user can either make changes to the checklist and reprocess it for supervisory approval, and they can delete the checklist.

 (2) Checklist Headers – Maintenance, Create, and Disapproval

 The header screen shows all headers in the table chklist_hdr table, with an x next to those that are currently in use in this checklist (hdr_no of record is in chklist_doc_element, and the data_no of that element record is in chklist_item).

 (3) Checklist Headers – Inquiry, Update, Final Review, Delete

 The header screen shows only those headers currently in use in this checklist (hdr_no of record is in chklist_doc_element, and the data_no of that element record is in chklist_item).

 (4) Checklist Elements – Maintenance, Create and Disapproval

 The element screen shows all elements in the table chklist_doc_element, with an x next to those that are currently in use in this checklist (data_no of record is in chklist_item).

 (5) Checklist Elements – Inquiry, Update, Final Review, Delete

 The element screen shows only those elements currently in use in this checklist (data_no of record is in chklist_item).

Screen 4 - FrmChkCreateAdd

 When the user clicks the Add button from the Create Header screen (frmChecklist – gconCreateHeader) or the Create Element screen (frmChecklist – gconCreateElement), the variable ChklFSCFlag is set to either Header or Element. This variable determines which fields on the screen are required for entry.

 a. If ChklFSCFlag = Header, both fields are blank, and both fields require entry.

 b. If ChklFSCFlag = Element, the selected header appears in the Header field, and the user is required to enter a new Element name.

 OK – When the OK button is clicked, the required fields are checked for entries. If the required entries are there, the program checks for duplicate entries.

 c. If a new header is being created, the program checks the Chklist_doc_hdr table to be sure the name of the header is not duplicated.

 d. If a new element is being created, the program checks the chklist_doc_element table to be sure the name of the element is not duplicated.

 e. If they are not duplicated, the program uses the highest value of chklist_doc_header.hdr_no to create a unique hdr_no for the new header. It uses the highest value of chklist_doc_element.data_no to create a unique data_no for the new element. The newly created records are inserted into their respective tables, and the grids on both screens (header and element) and refilled to include the new records.)

 Cancel – Returns the user to the calling screen.

 (1) Checklist Updates:

 DataSource – All records in chklist_hold_apprvl where routg is not null (empty) and disapproval is not null (empty).

This screen is called by the menu, using the GetUpdateData function to see if any updates are waiting for processing.

II-1-1-62
II-1-1-61

