3.5.5 EIC MAINTENANCE AND INTERROGATION

PURPOSE:

 a. The purpose of these forms is to view and maintain the contents of the EIC_ref table.

 b. Maintenance activities are Add, Change, and Delete.

 c. Anyone may interrogate the EIC_ref table.

 d. Maintenance is limited to EV, EN, SC, ME, and SU permission levels.

FUNCTIONALITY:

 a. The EIC_REF table may have nearly 27,000 records making it unwieldy. The EICs beginning with 5962 have more than 17,000 records. Because of the extreme demand on system resources and the limitations of Visual Basic to display such a large number of records, the user has the option to display only one record or all the records for an FSC. By setting option 3 to true (click on the radio button), the user may enter more than 4, up to 17, characters and the system will display a subset of those records.

 b. Even though all the information is available from the Oracle SQL, only the EIC is displayed in the grid. Other information (evaluator and description) for the record is displayed in the text box and the label. The OPI is used in validation to determine whether or not the user and the center are compatible.

 c. There are 3 forms in this set. The first is the entry form which allows the user to select either a desired EIC or several based on the FSC. If the user selects either of the top 2 option buttons, then he will only be allowed to enter 4 characters.

 d. Choosing the third button will allow a selection of a record with up to 17 characters. If the EIC Inquiry button is checked and he enters a portion of an EIC, he will get all the EIC’s having those same first numbers. The point is, if he knows the first few digits of the EIC then he can pull up all that begin with those numbers. This is an added feature to the original design.

 e. During maintenance, there is validation against the FSC_ref table for the FSC and OPI. Both the FSC and the first character of the OPI must be valid for that center for user to be able to save his entry. This will be especially noticed on an add. Look at the documentation for frmMaintFSC.cmdOK_Click.

 (1) Functions and Subs in frmInterrEICEntry:

 (a) The first screen is frmInterrEICEntry. It contains a frame holding 3 option buttons, 2 command buttons and one text box. Its purpose is to perform an SQL with a result set for frmInterrEIC_FSC grid.

 (b) cmdCancel has only one command(Unload me. It will merely unload the form.

 (c) cmdOK contains commands to call frmInterrFSC_EIC and frmInterrEntry.

 (d) mrsData.rdoColumns hold EIC, evaluator’s name, EIC description, FSC, and OPI.

 (e) The form’s activate contains the standard OpenWindow along with a determination of the form’s option to either be Interrogation or Maintenance. It’s caption and permission levels are determined at this time.

 (f) The form’s Terminate event removes traces of the form and mrsData when all the forms in this set are closed.

 (g) The form’s Unload contains CloseWindow.

 (h) The option buttons are optFSC, optFSCDescript, and optEICInquiry. By setting one of these to true, the form will perform in one of three ways.

 (i) The first two require the user to enter a valid 4-digit FSC. The third will allow the user to enter up to 17 characters of an EIC. Tool tips and the caption for the text box change appropriately.

 (j) txtEIC_FSC_Change contains code to capitalize entered data and to set the Maxlength property of the text box. There is no data validation on this field with regard to special characters since this field is used only for searching.

 (k) FillGrid: This function is called by GatherData after all the data has been retrieved from the Oracle table FSC_ref and stored in a rdoRecordSet.

 (l) FormatGrid: This function, like FillGrid, is called by GatherData. It loads the grid and heading titles. There are three hidden columns that contain data that can be used to populate the text box at the bottom of the form and the label.

 (m) GatherData: Performs the SQL and calls FillGrid and FormatGrid.

 (2) Functions and Subs in frmInterrEIC_FSC:

 This is the primary form for this set. There are 10 functions or subs in addition to the code for the form and behind the command buttons.

 (a) AddNewEICItem is called when the user depresses cmdAdd button. Sets up the input form with the first four places of the current FSC as the beginning value for the new EIC. (The user is not restricted to using this value, but it is assumed that it will be needed.) It sets the value of mintAddChangeDelete to 1 for adding. The input form is then displayed. The user may see multiples of the grid but not the input form or the entry form. The command buttons are disabled at this point; they will be enabled when the input form is closed. The delete function does not display the buttons as disabled, but disables the entire form.

 (b) ChangeEICItem sub calls the input form with data for all three of its fields. Column 4 of msgEIC_FSC, is not visible but it contains the OPI which is validated for changes. If the first place of the OPI does not match the first place in this column for this EIC, then the user will not be permitted to change it. The user is not permitted to change the EIC number at any time.

 (c) DeleteEIC will delete the currently selected record. This is the only sub that is completely contained within this form. It calls the input form’s functions: CheckForPendingAction, RenumberRows, EICUploadFile, and EICUpdateFile. The last two functions are called, depending upon the permission level of the user. If the user has permission to directly delete a record, then the sub RenumberRows is called. The rows of the grid will then have sequential numbers.

 (d) EnableButtons: This sub will enable or disable the form’s command buttons depending upon the parameter sent into the sub when it is called. It is call by the activate, AddNewEICItem, and ChangeEICItem.

 (e) GetEICDetail: This function will display the Input screen as a View screen when the OK button is depressed. The information will be that of the record number in the text box.

 (f) GetPermission: Establishes the authorization levels for various maintenance tasks.

 (g) GetTheToolTips is called by the option button click events. It allows the form to display conditional ToolTipText. In order to the effect of this call, the user must change the selected radio button on the form and let the tool tip show for the grid. The selected radio button may be changed by either clicking on the button or double clicking on the grid itself.

 (h) RenumberRows puts sequential row numbers in the grid. It is called by activate, after an add, and DeleteEIC.

 (i) SearchforNumber: Used in the incremental search. Will display the proper record and its evaluator and description depending on which radio button has been selected.

 (j) SetTheOptionButtons sets the option buttons based on the calling form frmInterrEICEntry. It is called by the Load.

NOTE: If it is determined that the form has been retrieved for Interrogations, the only command buttons to show are the cancel button and the OK button.

 (3) Functions and Subs in frmMaintEIC:

 (a) AddEic: This function is also used for changes. Cleans up the data being saved with ChangeTicks and ParseOut. Based up on permission level, it will call EICUploadFile or EICUpdateFile. It is called by cmdOK_Click and returns a true or false.

 (b) CheckForPendingAction: Determines whether or not there is a record in the FSC_upd table with the same FSC as the one that is being changed, etc. Then, the function returns True or False; no changes, deletions, or additions will be allowed if there is pending action. It is called by AddEic and frmInterrEIC_FSC.DeleteEIC

 (c) ClearOutDataFields: This function empties all the text boxes in frmMaintEIC form. It is called by EICUploadFile.

 (d) CorrectCharacters: When this form is loaded, mrsFSCData.rdoRecordset is created. It holds all the FSC and OPI values in the FSC_ref table. The FSC and OPI must agree for the user to continue.

 (e) EICUpdateFile: This function records data in EIC_UPD. It is called by AddEic and DeleteEIC when the user has subordinate permission levels.

 (f) EICUploadFile: This function operates the same as EICUpdate but records the data in the EIC_ref table. Additionally, it will add a record to the Upload table.

 (g) GetPermission: Establishes the authorization levels for various maintenance tasks.

 (h) TestForChange: Tests to see if the user actually made a change to the data before it is saved. It is called by cmdOK_Click.

 (i) TestForUpload: Three criteria are tested to determine eligibility for upload: (1) actual change, (2) change only in the evaluator, and (3) specific FSCs. If there is no change, the user is notified and no upload takes place. If there is only a change in the Evaluator, there is no record placed in the Upload table or FSC_ref table. So, if that is the only change, then there will be no upload. FSC’s 5935, 6145, and 5962 must have a certain number of characters. FSC’s 5935 and 6145 must have at least nine characters; FSC 5962 must have at least seven characters. These data will be tested in order to determine whether or not to record the new data. This function is called by EICUploadFile.

 (j) UniqueEIC: Performs a GetData on the EIC_ref table to determine whether or not there is another FSC already in the table. It returns the return values of GetData. It is called by cmdOK_Click.

 (k) cmdOK_Click: The validations that take place are (1) determines that all three fields contain data, (2) the FSC belongs to the user’s center, (3) FSC must be in FSC table, (4) the EIC must be unique, (5) to be uploaded 5935 or 6145 and 5962 have at least five characters after the prefix, and 5962 must have three at least characters after the prefix, (6) there must no pending action for this EIC. Extra spaces and lines in description are removed with the ParseOut function. If all these tests are accomplished, then AddEic is called.

 (l) txtEIC_KeyPress: txtEIC is used for validating certain keystrokes. When the user wants to add a new EIC, at this writing, he will start by entering, at a minimum, an FSC. However, he does not have to add an EIC that begins only with these four characters. The EIC identification process requires that the first four characters match an existing FSC; existing FSCs may have four digits or MISC at this time. The next characters must be upper case and not be a space, and apostrophe, an asterisk, a comma, a hyphen, a period or a back slash (/); those characters are tested for.

INCLUDED FORMS:

 frmInterrEICEntry

 frmInterrEIC_FSC

 frmEICInput

TABLES:

 EIC_REF

 EIC_UPD

 UPLOAD

3.5.6 ENVIRONMENTAL CODES MAINTENANCE AND INTERROGATION

PURPOSE:

 a. The purpose of these forms is to view and maintain the contents of the Environment_Code table.

 b. Maintenance activities are Add, Change, and Delete.

 c. Anyone may interrogate the Environment_code table.

 d. Maintenance is limited to Me and SU permission levels. There are no subordinate maintenance levels; hence, there is no update table. All maintenance is done directly.

FUNCTIONALITY:

 a. frmInterrEnviroment contains a grid that displays the record number, environment code, and its abbreviation. The data is accumulated in LoadTheData using GetData function. There is an array mstrEnvironArray that has been initialized in modPartsMisc as a public array. Its values are used in frmMaintEnvInput to determine whether or not a duplicate code has been used.

 b. The entire remark can be displayed by either clicking on a specific record or using the up and down arrow keys. The click code is msgEnvironCodes_Click that gets the contents of the grid’s textmatrix contents for the particular row. The up and down arrow keys display data in the text box at the bottom using SelChange. This event fires when each cell is loaded, so the use of a form variable (mblnAreWeIn) is needed to prevent stack overflow.

 c. There are five buttons on the form: Add, Change, Delete, Cancel and OK. Only the OK and Cancel buttons are displayed for both Interrogations and Maintenance. The maintenance buttons are displayed after the form has been loaded with data.

 d. Deleting a record takes place from the grid. Add and Change requires the use of frmMaintEnvInput. A change is made only to the remark and the abbreviated remark. No change is made to the environment code itself. That will require an add and a delete.

 e. There is no upload.

 f. Additions and modifications to these tables are done via PutData function.

 g. CheckUserFunctions is the function used to determine the users highest permission level.

 (1) The functions for frmInterrEnvironment:

 (a) AddNewEnvItem: Clears out the text boxes for and add; sets the value for mintAddChangeDelete and shows the input form. It is called by CmdAdd_Click.

 (b) AfterAddChange: This Sub maintains the grid after an add or a change. It is called by the activate event. It calls MaintainArray and EnableButtons.

 (c) ChangeEnvItem: Displays the input form in either Change or View mode, depending upon whether or not the user is in Maintenance or Interrogation mode. If in change mode, the grid and the text boxes will display the changes.

 (d) DeleteEnvItem: Deletes existing environment code. This function actually performs the delete without displaying the input form. It is called by cmdDelete_Click.

 (e) EnableButtons: Enables/Disables the command buttons depending on the value of the boolean parameter.

 (f) GetPermission: Determines whether or not the user has authority to perform the maintenance task. It calls the CheckUserFunctions in modPartsMisc. It is called by LoadTheData.

 (g) GetTheText: Inserts text into the record number text box and its corresponding environment code. It is called by msgEnvironCodes_Click and msgEnvironCodes_SelChange.

 (h) LoadTheData: Creates the rdoResultSet before the form is shown.

 (i) MaintainArray: Maintains the array when there is an add or a delete. It does it by going through the grid to get the values.

 (2) The functions for frmMaintEnvInput:

 (a) CheckFieldContents: Makes sure there is entry in every field before the user saves his entry. It is called by cmdOK_Click and by txtAbbrRmk_KeyDown.

 (b) CheckUnique: Examines the value of txtEnvCode to determine whether or not the user has entered a code that already exists. It is called by cmdOK_Click during an add.

 (c) EnableButtons: Enables/Disables the buttons on the form. Requires a boolean parameter to determine the state of the buttons. It is called by cmdOK_Click.

INCLUDED FORMS:

 frmInterrEnvironment

 frmMaintEnvInput

TABLES:

 Environment_Code

3.5.7 FSC MAINTENANCE AND INTERROGATION

PURPOSE:

 a. The purpose of these forms is to view and maintain the contents of the FSC_ref tables.

 b. Maintenance activities are Add, Change, and Delete.

 c. Anyone may interrogate the FSC_ref table.

 d. Maintenance is limited to EV, EN, SC, and SU permission levels.

FUNCTIONALITY:

 a. There are four buttons on the form. Add, Change, Delete, and Cancel. Only the Cancel button is displayed for both Interrogations and Maintenance.

 b. The user will select Interrogation for the menu. As the form is being loaded, the data contained in the FSC_ref table is displayed. There are three fields to view: FSC, OPI, TIR_IND. TIR_IND may contain only 1 of 2 values, Y or N. The records are displayed in FSC order and the rows are numbered.

 c. The display is accomplished using GetData function that is used in frmInterrFSC.LoadTheForm. The function is called from the menu option that also sets a value of M or I to mstrOption. M is for maintenance and I is for Interrogation. In this function, there is a public array mstrFSCArray which is filled in at this point.

 d. Maintenance occurs on one of two levels: Updating the FSC_ref directly and adding the modified record to the FSC_upd table for subsequent approval. Adding records to these tables is determined by the permission levels. ME and SU may update directly; EV, EN, and SC must place their modifications in FSC_upd.

 e. Maintenance of any kind is prohibited if there is a record in the FSC _upd table containing the value of the FSC under consideration. This function is named CheckForPendingAction and is found in frmMaintFSCInput.

 f. Deleting a record takes place from the grid. Add and Change requires the use of frmMaintFSCInput. A Change will permit the user to change the value of OPI and TIR_IND. The first place of the OPI must be the same as the first place in gpcf.OPI. The value of TIR_IND may be either Y or N. Option buttons are used for this.

 g. Additions and modifications to these tables are done via PutData function.

 (1) The functions for frmInterrFSC:

 (a) DeleteFSC: This function will delete an FSC and Call the maintenance form's FSCUpload. Or, it will perform an Update depending upon permission level. The grid will be reloaded by calling LoadTheForm.

 (b) LoadTheForm: The purpose is to get the data to be used in the grid using Getdata to execute the SQL. It is called by the menu’s click. It will return a number: 0, 1, or -1. 0 means the search was OK, but no records were found, 1 means that the search was OK and records were found, -1 means that there was some sort of data error.

 (c) SearchFSC: Searches through the grid to find the item being searched for in the text box. It is called by txtEntry_Change.

 (2) The functions for frmMaintFSCInput:

 (a) CheckFields: Will not enable the fields unless there are the minimum number of characters entered into in each of them. It is called by txtFSC_Change and txtOPI_Change.

 (b) GetPermission: This function is used to determine the user’s highest permission level. It makes use of CheckUserFunctions. It is called from frmInterrFSC.Form_Load.

 (c) CheckForExistingFSC: Checks against the value of the data input into the data fields to determine whether or not there is an existing record with the same or similar values. If there is an existing FSC with different OPI and TIR Indicator, then the value of mintAddChangeDelete becomes a 2; otherwise, it is a 1. If the user answers the question in the negative, then mintAddChangeDelete becomes a 0.

 (d) FSCUpdateFile: This function will record data for users with subordinate permission levels into the FSC_UPD for subsequent approval.

 (e) FSCUploadFile records the data in both the FSC_REF and Upload tables for higher levels of permission.

INCLUDED FORMS:

 frmInterrFSC

 frmMaintFSCInput

TABLES:

 FSC_ref

 FSC_upd

3.5.8 GIDEP MAINTENANCE AND INTERROGATION

PURPOSE:

 a. The purpose of these forms is to view and maintain the contents of the Gidep and Gidep_part tables.

 b. Maintenance activities are Add, Change, and Delete.

 c. Anyone may interrogate the Gidep and Gidep_part tables

 d. Maintenance is limited to EV, MG, and SU permission levels.

FUNCTIONALITY:

 a. frmGIDEPMaint is visible only to persons who have maintenance privileges. The caption of each form indicated whether or not the user is in Interrogation or Maintenance mode.

 b. GIDEP is the parent table and GIDEP_PART is the child table. They are related by Part_No plus Alrt_no fields. GIDEP_PART is used to record up to three NSNs with corresponding GIDEP_PART_NO per GIDEP_PART.Part_No. Each NSN has a Sequence Number numbered 1 through 3. The Sequence Number is re-assigned whenever there is an addition or change to the GIDEP_PART_NO table.

 c. The primary form frmInterrGIDEP contains a grid, two Option buttons, a locked text box, and a text box that can receive data.

 d. The grid has eight columns that are filled with data from both tables. The data is created using an outer join in frmInterrGIDEP.LoadGIDEPForm. The first is fixed and contains row numbering for the Part Number. The Option buttons offer the user the ability to perform searches on either the Part Number or the Alert Number.

 e. The text box is used for searching for either part numbers or alert numbers; again, depending on which of the option buttons is selected.

 f. There are two other text boxes and two labels. The label at the top displays the number of records loaded into the grid. The label at the bottom identifies the Part Number on which the user is resting. The text box below contains the resolution.

 g. At the time the SQL gathers the data, it gathers data from gidep, gidep_part, and gidep_upd. Not all columns are displayed. Only the Part Number, Alert Number, CAGE, sequence number, NSN, and a GIDEP Part Number.

 h. There are five buttons on the form. OK, Add, Change, Delete, and Cancel. Only the Cancel and OK buttons are displayed for both Interrogations and Maintenance. The maintenance buttons are displayed after the form has been loaded with data to prevent the user from depressing them before the data is loaded.

 i. The Delete function is in the click event of the Delete button. All sequences of a Part Number + Alert Number are deleted. Individual Sequences are not deleted. FrmMaintGIDEP is displayed showing all the

NSNs, Sequence Numbers, and GIDEP Part Numbers relating to the selected Part Number/Alert Number pair. One array is created containing the record identifications for the parent and the child table if the user has permission to delete directly. If the user has permission to recommend part numbers for deletion, frmGIDEPInput.WriteUpdate procedure is performed.

 j. If the user has permission to update directly, then frmGIDEPInput.WriteUpload will execute. In this instance, frmGIDEPInput.ReloadTheGrid will refresh the grid. It is actually reloaded using GetData.

 k. In all instances, no modification, addition, or deletion will be made if there is pending action.

 l. Additions, deletions, and modifications to these tables are done via PutData function.

 m. CheckUserFunctions is the function used to determine the user’s highest permission level.

 n. The second form is frmMaintGIDEP containing 10 text boxes and two command buttons. If it is called from the Change button on frmInterrGIDEP, the part number and alert number fields will be disabled. The user may not change either of these fields. The user may only change the rest of the fields.

 o. If the user wants to add a new part/alert, he must select add from frmInterrGIDEP. Depending upon which of the two option buttons that have been selected, one of the fields will be prefilled. It may be changed. Two functions, DetectChange and IsThereChange are invoked to determine whether or not there is a change. DetectChange determines if there has been data entered that is different from the text originally displayed. IsThereChange is the comparison of data elements and is called by DetectChange.

 p. IsThisAdd_Change determines whether there was an add or a change. The user can modify any field in the form, so if he is originally saying he wants a change, he can end up with an add. It is called by the lost focus of the part number and also the alert number fields. It will assign an A or a C to the upload action.

 q. Error checking involves making sure there are 13 places in the NSN fields if they are used, and that both the part number and the alert number fields have data. Only the part number and alert number are required.

 r. The frmMaintGIDEP is immediately unloaded after the data is UPDATED.

 (1) The functions for frmInterrGIDEP:

 Originally, frmMaintGIDEP was to be used only for Add and Change. The Delete process took place entirely from frmInterrGIDEP. Hence, the naming of the procedures does not connote the delete process, but it is in there now.

 (a) AddNew_ChangeItem: Displays the proper data in the maintenance form. Assigns a value to mstrAction.

 (b) ChangeGIDEP: After the user double-clicks on a record in the grid, the double-click event examines the user's option and, if appropriate, he will be shown the maintenance form in either view, review, or change mode. This procedure assigns the text to the label and calls the next two subs to show the form.

 (c) EnableButtons: Disables the command buttons, based on the various uses of the form. The procedure is called by AddNew_ChangeItem, SearchForMaintenance, ReloadTheGrid, ChangeGIDEP, CmdAdd_Click, EnableButtons, cmdOK_Click, EnableButtons, ChangeGIDEP functions.

 (d) GetPermission: Determines whether or not the user has authority to perform the maintenance tasks. It is used to determine if the file is passed to the Upload table or the Update table.

 (e) GetTheToolTips: Puts the tool tip text onto the grid.

 (f) LoadGIDEPForm: Fills the Grid with data; performs the SQL. Returns a number: 0, 1, or -1. 0 means the search was OK, but no records were found; 1 means that the search was OK and records were found; -1 means that there was some sort of data error. It is called by the Menu selection.

 (g) It calls SetMessage, ResetMessage, ChangeTicks, LoadGrid, PartAlertSearch, and EnableButtons.

 (h) PartAlertSearch: Formats the text box for data entry of the part alert number, depending on what the user has selected. It is called by optAlertNumber_Click, optPartNumber_Click, LoadGIDEPForm, and txtSearch_KeyPress. It calls no other functions.

 (i) PutTextInResolution: Puts the information in the Problem Resolution text box. The information is found in one of the grid's hidden cells. It is called by msgGIDEP_SelChange.

 (j) ReloadTheGrid: This function makes the determination of whether or not to run LoadGIDEPForm. Sets the top row and the selected row. It is called by the Activate. It calls EnableButtons. It examines the permission levels; if the user is a subordinate, the Part No. column will be updated with the part number to indicate that there is pending action. If the user has rights to directly update the records, this function will call LoadGIDEPGrid. This is called from the form’s activate.

 (k) SearchPartAlertNumbers: Does the incremental search based on the number of characters in the search string. Looks in either the part number or the alert number column of the grid. Even though the function appears to return a value, its value is used only within the function itself.

 (l) CmdAdd_Click: Calls AddNew_ChangeItem and puts a value in the part number identification label.

 (m) cmdDelete_Click: Calls AddNew_ChangeItem with a parameter of DELETE and EnableButtons. Presents a message box asking the user if he wants to proceed. If yes, the input form is formatted and displayed.

 (n) cmdOK_Click: Searches the grid to find the record number in the grid as requested by the user. Calls CheckRecNo and SelectRow found in modPartsMisc. If the user is interrogating the records, the maintenance form is displayed as view only, using AddNew_ChangeItem with a parameter of view. It also calls EnableButtons.

 (o) Form_Activate: This event has a conditional call to ReloadTheGrid and always calls UpdateWindowList and GetTheToolTips.

 (p) Form_Load: Calls GetPermission and makes a determination of the appropriateness of whether or not the user has clearance to be performing maintenance. It also sets the caption of the form.

 (q) optAlertNumber_Click and optPartNumber_Click: Sets the focus to the search entry data box and determines the length of the text to be entered, based on Part or Alert number selection. Changes the tool tip text.

 (2) The functions for frmMaintGIDEP:

 (a) BuildUploadRecord: Returns the record that is to be posted in the Upload table. The function is called by WriteUpload.

 (b) CheckArrayforPendingAction: Check each row of the array to see if there is pending action. We are just checking to see if there is something in the data element. It is called by Text1_LostFocus and PendingAction.

 (c) ClearOutDataFields: Clears out the data, all but either the part number or the alert number, depending on the option selected when entering the form. GoToUpdate, WriteUpdate, and WriteUpload.

 (d) DeleteGIDEP: If WriteUpdate is called, then this sub is invoked. Deleting for the direct deletes is simpler, but for the subordinate, delete the entire record is placed into the gidep_upd and gidep_part_upd tables. The records are developed using the array rather than the form because originally, the delete was performed from frmInterrGIDEP grid.

 (e) DeleteItem: If the user has permission to delete directly, the delete takes place in this function. Otherwise, WriteUpdate is called.

 (f) DetectChange: Determines if there was actually a change in the data fields. A CHANGE will be noted if the Part Number and Alert Number remain the same and one of the other fields is changed. If either the Part Number or the Alert Number changes, an ADD will be noted. The values are examined against the array. This function guards against the user declaring an add and then entering part numbers or alert numbers that already exist. It is called by cmdSave_Click.

 (g) DisableControls: Locks controls after a save-preventing user from saving more than one time in the form. It is called by cmdSave_Click and Text1_Lostfocus. Also used when the form is used as a viewing form.

 (h) EnableFields: Enables and/or disables the fields if the Part Number and Alert Number are completed. Called by Text1_Lostfocus.

 (i) GetTheToolTips: Supplies the appropriate tool tip text based on the use of the form.

 (j) IsThereChange: Completes the process started by DetectChange.

 (k) IsThisAdd_Change: This function is also used in the Delete process. Determines whether there was an add or a change or Delete. Matches up to an array element. The user can modify any field in the form, so if he is originally saying he wants a change, he can end up with an add. Also fills up the fields other than the Alert Number and Part Number. It is called by Activate and Text1_LostFocus.

 (l) PendingAction: If there is pending action, no maintenance on a unique Part Number/Alert Number combination may take place. For Change and Deletes, the program just examines the array to see if there is pending action. For an Add, there is an SQL done on the GIDEP table. 1, 0, or -1; there is a pending record, no pending records, error respectively. It is called by cmdSave_Click.

 (m) UpdatePendingActionArray: Replaces column number 7 of the array with the part number if there is pending action. It is called by WriteUpdate.

 (n) WriteUpdate: Performs the recording of the data to the update tables. It calls ClearOutDataFields and UpdatePendingActionArray.

 (o) WriteUpload: It adds, changes, or deletes the current record in the GIDEP and GIEDP_PART tables. Builds an array to add to the UPLOAD table.

INCLUDED FORMS:

 frmInterrGIDEP

 frmMaintGIDEP

TABLES:

 Gidep

 Gidep_part

 Gidep_upd

 Gidep_part_upd

 Upload

3.5.9 IMPAC MAINTENANCE AND INTERROGATION

PURPOSE:

 a. The purpose of these forms is to view and maintain the contents of the IMPAC, IMPAC_SVC, and IMPAC_UPD tables.

 b. Maintenance activities are Add, Change, and Delete.

 c. Anyone may interrogate the IMPAC tables.

 d. Maintenance is limited to EV, EN, MI, and SU permission levels.

FUNCTIONALITY:

 a. Because there are regularly over 6,000 records in the IMPAC table, it is not appropriate to display them in a grid. The form shows only one record set at a time.

 b. There are five buttons on the form. Add, Change, Delete, Search, and Cancel. The Cancel and Search buttons are displayed for both Interrogations and Maintenance. The maintenance buttons are displayed as disabled until a successful search has been made

 c. There are 32 functions and subs in this form in addition to the code that is behind the text boxes, command buttons, and the form itself. The form is complex because there are so many opportunities for the user to enter data incorrectly and also, there are eight tables to be updated; the eight tables are also represented by eight rdoResultSets.

 (1) Functions and Subs in the IMPAC form:

 (a) Add_Db creates three arrays, one for IMPAC, one for IMPAC_SVC, and one for IMPAC_ENVMT to record in the tables using the PutData function. Had to create separate arrays for each table because sometimes, there was a failure with PutData to handle the array elements properly so that the parent table was updated before a child table; it also calls IMPACSeqCode to get a new Sequence Code.

 (b) AddIMPAC adds new records to the IMPAC tables. First, the sub checks the FSC array to see if there is a valid FSC in the first four positions of the EIC field. There is no check if the field has no data. Calls the CheckForBlankFields, CheckForPendingAction, and CheckForDuplicatePartNumber, functions. Then, it calls WriteIMPACUpdate or WriteIMPACUpload, depending upon permission level.

 (c) ChangeIMPAC calls CheckForChange, CheckForPendingAction, and CompareToFSCArray. Also calls WriteIMPACUpdate or WriteIMPACUpload, depending upon permission level. Also makes use of EnableButtons. Creates a change to an existing IMPAC record. It either goes to the IMPAC_UPD or the IMPAC, depending upon permission level.

 (d) When cmdSearch button is depressed, a module level property mstrPN is set to the current value of the Part Number. That way, if the user changes the part number prior to depressing the Change button, the module will recognize that they potentially have an add calling AddIMPAC. Validation using CompareToFSCArray takes place on the EIC field, making sure the first 4 places match a valid FSC.

 (e) If CheckForPendingAction determines there is pending action, then the EnableButtons function is called.

 (f) CheckForBlankFields is a function that examines 6 of the data fields to see if they have been completed: Part Number, Scan, Skip, Scan, and the EIC fields. These fields are mandatory for the record to be Added or Changed. It is called by AddIMPAC, ChangeIMPAC, WriteIMPACChangeUpdate, WriteIMPACChangeUpload, and txtFEDate_KeyDown if the cmdSearch button is disabled.

 (g) CheckForChange compares the values in the data form as they existed before a change was requested to see if there are really any changes. The only way a change could get through is if the user erased field in svc code and/or svc_acty code and moved them to a different place but still have their relative positions the same. It is called by ChangeIMPAC. It will clear the data fields if the user likes. The array that is used is created in CreateIMPACArray.

 (h) CheckForDuplicatePartNumber called by AddIMPAC. It performs a GetData function on the Impac table to see if there is already that part number in it. Then, it warns the user that there is a duplicate part number and prevents the add from proceeding.

 (i) CheckForPendingAction performs a GetData function to see if this part number is in the IMPAC_upd table and awaiting approval. No modification will be allowed from this point if one does exist.

 (j) CheckforServiceCode: Data validation for the add and change. Looks at a string ADFN to see if any of those values are contained in this field. If not, then a message box is presented. It is called by CommonCode and txtServiceCode_LostFocus.

 (k) CheckforQPL: This function is used for data validation during the add and change operations. It checks to see if there is a value in the QPL data field and provides a message box if there is none.

 (l) ClearDataFields is called by CheckForChange, cmdSearch_Click, DeleteIMPAC, WriteIMPACChangeUpload. It merely clears out all of the text boxes on the form.

 (m) ColorTheTextBoxes is called by the form’s Activate. All the text boxes except the part number are locked during interrogation. This function colors and locks them. This is a reusable form.

 (n) CommonCode: Performs data validation for the add and change. It is called by AddIMPAC and ChangeIMPAC. It is merely an index to other data validation tools: CheckforServiceCode, CompareToActyArray, CompareToEnvCdArray, CheckforQPL, CompareToFSCArray, and CheckForPendingAction.

 (o) The three functions CreateActyCdArray, CreateEnvCdArray, and CreateFSCArray all create separate arrays from ACTYCD, ENVIRONMENT_CODE, and FSC_REF tables, respectively. They are then be used in data validation in CompareToActyArray, CompareToEnvCdArray, and CompareToFSCArray. These are all called from the form’s load event if the form is to be loaded as a maintenance form and not interrogation.

 (p) CompareToActyArray compares values entered into the Service Activity Codes to existing values. The form has five text boxes named txtServiceActivityCode that are an array on the form. This function compares these values to the Service Activity Codes contained in mrsDataActyCd that has been created in the function CreateActyCdArray. This is for data validation for the Activity Code input.

 (q) CompareToEnvCdArray compares values entered into the Environmental Code Exclusions to existing values. The form has four text boxes named txtECodes that are an array on the form. The function compares these values to the Environmental Codes contained in mrsDataEnvCd that has been created in the function CreateEnvCdArray. This is for data validation for the Environmental Code input.

 (r) CompareToFSCArray compares the first 4 places of the value entered into the EIC field to existing values. The form has one text box named txtEIC. The function compares the value to the FSC contained in mrsDataFSC that has been created in the function CreateFSCArray. This is for data validation for the EIC input. It is called from AddIMPAC.

 (s) CreateIMPACArray is an array of the entire field except the part number after a search. Its use is in ChangeIMPAC to determine whether or not there has been a change before the user actually starts performing SQLs on the Oracle data bases. The values are stored in form level properties. CheckForChange is the function that is used for data validation.

 (t) DeleteIMPAC will delete the IMPAC record if there is no pending action. There is validation for permission level and pending action. The permission level is noted in the module level variables. Pending action is determined by calling CheckForPendingAction. If there is not permission for the user to delete directly, then WriteIMPACUpdate is called. The function creates an array of SQL statements to be used by PutData. If there is a problem deleting the record, then EnableButtons is called to reset the buttons to ON.

 (u) DisplayTheData is called by cmdSearch_click and displays the data in the appropriate text boxes. The data is contained in mrsDataIMPAC.rdoResult set.

 (v) DoEvalImpac:

 (w) EnableButtons is called by the following functions and subs: AddIMPAC, CheckForBlankFields, CheckForChange, cmdSearch_Click ClearDataFields, DeleteIMPAC, DeleteIMPAC, DisplayTheData, IMPACSeqCode, Load, PutInOldValues, WriteIMPACChangeUpdate, WriteIMPACChangeUpload, WriteIMPACUpdate, WriteIMPACUpload. Its purpose is to enable or disable the buttons, based on the requirements of the data entry form. It sometimes is not sufficient; there are commands after the calls to counter the action of EnableButtons.

 (x) GatherData is called in the cmdSearch_Click. It makes use of the GetData function in the dbRemote.dll. It selects the data needed to display the information on the data form.

 (y) GetPermission establishes the permission level of the user. It uses the CheckUsersFunctions in modPartsMisc.bas. It is called only when the form is loaded. There are two module level variables mintMISU and mintEVEN which are assigned values at this time and can be used to determine whether or not the user is permitted to update directly or must have the suggested updates approved at a later time.

 (z) GetTheToolTips is used to display tooltips on the command buttons, based on changing requirements. It is called by EnableButtons and txtPN_Change.

 (aa) IMPACSeqCode which updates IMPAC_SEQ. The numbering begins at 1 at the beginning of each day; and 1 if there are more than 999 in a day, the numbering starts over again at 1. The most recent value is stored in the IMPAC_SEQ table. This table only has one record and is updated whenever the upload record is created. This function is called by ADD_DB, WriteIMPACChangeUpload, and WriteIMPACUpdate.

 (ab) PutInOldValues restores all the data fields to the original values. It is called by WriteIMPACChangeUpdate. It uses the values created in CreateIMPACArray.

 (ac) WriteIMPACChangeUpdate writes data to the Update tables for the Change. It records the data for both levels of permission. It is called by ChangeIMPAC. It makes use of EnableButtons.

 (ad) WriteIMPACChangeUpload: This function records the data into IMPAC, IMPAC_SVC, and IMPAC_ENVMT tables. The operation is limited to users with MI and SU permission levels. There are a series of PutData statements after a call to IMPACSeqCode. The order of business is to delete from the IMPAC_SVC and IMPAC_ENVMT tables the current records and then add them back into the tables as recorded on the form. Next, there is a call to WriteIMPACUpload with a parameter of C. Other functions called are CheckForChange, CheckForBlankFields, ClearDataFields, and EnableButtons.

 (ae) WriteIMPACUpdate writes data to the Update tables for the Add and Delete for users whose permission levels are EV or EN. It calls IMPACSeqCode, which writes an entry into the IMPAC_SEQ table. There are entries to the IMPAC_UPD, IMPAC_SVC_UPD, and IMPAC_ENVMT_UPD tables. It is called by AddIMPAC with a parameter A, and DeleteIMPAC with a parameter D. It returns an integer -1, 0, or 1. A negative 1 will only be returned if IMPACSeqCode returns a negative 1; a 0 or 1 will be return as a result of PutData function return.

 (af) WriteIMPACUpload: This function takes the information recorded in the data fields on the form, creates a record for the Upload table and records it. It calls CheckCenterCode, and IMPACSeqCode. This is called by AddIMPC, DeleteIMPAC, and WriteIMPACChangeUpload.

INCLUDED FORMS:

 FrmInterrIMPAC

TABLES:

 a. These tables are subject to modifications:

 IMPAC

 IMPAC_SVC

 IMPAC_ENVMT

 IMPAC_UPD

 IMPAC_SVC_UPD

 IMPAC_ENVMT_UPD

 IMPAC_SEQ

 UPLOAD

 b. These tables are needed for inquiries:

 ACTYCD

 ENVIRONMENT_CODE

 FSC_REF

3.5.10 INACTIVE FOR NEW DESIGN MAINTENANCE AND INTERROGATION

PURPOSE:

 a. The purpose of these forms is to view and maintain the contents of the Inactive table.

 b. Multiple instances of the grid are not available. However, there may be multiple instances of frmMaintInactive form.

 c. Maintenance activities are Add, Change, and Delete.

 d. Anyone may interrogate the Inactive table.

 e. Maintenance is limited to EV, EN, SC, and SU permission levels.

FUNCTIONALITY:

 a. The user will select Interrogation or Maintenance from the menu. As the form is being loaded, the data contained in the Inactive table is displayed. Only the Part_No field is displayed; the user will have to double click on the grid or depress the OK button to see the next form that contains the rest of the data in the record.

 b. frmInterrInactive is a form with five buttons. Add, Change, Delete, Cancel, and OK. Only the Cancel button is displayed for both Interrogations and Maintenance. The maintenance buttons are displayed only after the form has been loaded with data and there is permission level for maintenance. frmMaintInactive has two buttons: OK and Cancel. Only the Cancel button is displayed for Interrogations.

 c. The Load of frmInterrInactive calls frmMaintInact.GetPermission, sets the form’s caption based on the Permission level and also the request from the program menu. In other words, the form will recognize whether or not the user has come from the maintenance menu but does not have maintenance privileges. Conditional tool tips for the grid are set at this point. The user will have to double-click on the grid to see the next form if he is in interrogation mode. A single click on the grid for maintenance places data in the text boxes at the bottom of the form representing the record number and the part number. The user may then depress one of the maintenance buttons, or double-click on a record, to get to the next form.

 d. The Load also calls a function named DisplayPartNumber that develops the grid from Inactive table. All data is gathered into the grid, but all of the column widths have been set to zero except for the Part_No. That makes the data in the grid immediately available to frmMaintInactive using the textmatrix properties.

 e. Maintenance occurs on one of two levels: Updating the Inactive directly and adding the modified record to the Inactive_upd table for subsequent approval. Adding records to these tables is determined by the permission levels. SC and SU may update directly; EV and EN must place their modifications in Inactive_upd.

 f. Maintenance of any kind is prohibited if there is a record in the Inactive_upd table containing the value of the Part_No under consideration. This function is named CheckForPendingAction and is found in frmMaintInactive.

 g. The maintenance buttons call a function frmInterrInactive. LoadTheNextForm with a parameter ADD, CHANGE, and DELETE. If the user is adding, only data (system date) and the OPI is filled in and is not editable. All other fields will be blank. However, for Change and Delete, all the other fields will be filled in. Still the OPI and the date will not be editable.

 h. The unusual feature of this form is that the user may change the part number that is a key field. This activity becomes, in effect, an Add and a Delete in one operation. In this case, BuildUploadforChange creates the Upload record for the Add/Delete having the same timestamp for the mainframe. So the Upload records are developed and added to the Upload in this one procedure. Change is also recorded in this procedure and will only develop one record.

 i. BuildUploadforAddorDelete develops records for Adding or Deleting. They will be single records for the Upload table.

 j. FixuptheGrid adds a record to the grid if adding, deletes a record if deleting, or changes a record if changing. This is for maintenance of the grid only and is aside from the maintenance of the data. The user will be left at or near the subject record. The rows are renumbered.

 k. CheckUserFunctions is the function used to determine the users highest permission level.

 1. DeleteInactiveData develops the SQL for deletion of a record. There are two functions, EnableButtons and DisableTextBoxes that are used for the appearance of the maintenance form. Enablebuttons requires a parameter ON or OFF. DisableTextBoxes merely shows all the text boxes as disabled and is used for the deletion process for maintenance and interrogations where the user may not edit the text boxes.

 m. Since the OPI and the Date are system generated, the only text box that requires data is the part number. ValidData is the function that will accomplish this.

 (1) The functions for frmInterrInactive:

 (a) DisplayPartNumber: Collects all the data into a grid that displays only the part number. All the rest of the data are contained in columns whose width has been set to 0. This information is stored to use in the maintenance form. It is called from the menu selection before the form is displayed.

 (b) LoadTheNextForm: Loads the maintenance form with the data collected in the grid form for either viewing or maintenance by the user.

 (c) Search: Performs a search for use by the record number text box.

 (2) The functions for frmMaintInactive:

 (a) BuildUploadforAddorDelete, BuildUploadforChange, CheckForChange, CheckForPendingAction, DeleteInactiveData, DisableTextBoxes, EnableButtons, FixUpTheGrid, GetPermission,

LoadPartNumberData, RenumberRows, ValidData, WriteUpdate, and WriteUpload: Calls the appropriate function for creating the upload record(s). Because the user may actually change the key field - Part Number - there is a requirement that both an add and a delete occur for the upload. The upload records will have the same timestamp and therefore, are done in BuildUploadforChange.

 (b) For Add and Delete, only one record is developed for the upload. BuildUploadforAddorDelete is the function to take care of these situations.

INCLUDED FORMS:

 frmInterrInactive

 frmMaintInactive

TABLES:

 Inactive

 Inactive_upd

3.5.11 PROBLEM PART MAINTENANCE AND INTERROGATION

PURPOSE:

 a. The purpose of these forms is to view and delete part numbers from the Prob_Part Table.

 b. The only maintenance activity is Delete.

 c. Anyone may interrogate the Prob_Part Table.

 d. Maintenance is limited to EV, EN, SC, and SU permission levels.

FUNCTIONALITY:

 a. There are two forms needed to display the data for both Interrogations and Maintenance. There are no multiple instances for frmInterrProblemPartEntry; however, the user may have multiple instances of frmInterrProblemPart.

 b. The user is first presented with a small form whose caption is Problem Part Input. The user then enters the part number to be viewed and depresses OK. If the part does not exist, a message box indicating that the part number is not found is displayed. The user may enter another part number to search.

 c. frmInterrProblemPartEntry.GatherData is the function used to display the data. It makes use of the Getdata function. For both maintenance and interrogation, there is a function named DropEarlyDate. The table only retains up to eight records with the same Part_no. The earliest dates are then automatically deleted. (The Prob_part Table currently has about 31,200 records.)

 d. The records in the DropEarlyDate functions are not placed in the Prob_part_upd for approval.

 e. Maintenance occurs on one of two levels: Updating the Prob_part directly and adding the modified record to the Prob_part_upd Table for subsequent approval. Adding records to these tables is determined by the permission levels. SC and SU may update directly; EV and EN must place their modifications in Prob-part_pd.

 f. Deletion of a record is prohibited if there is a record in Prob_part_upd except for the DropEarlyDate. CheckforPendingAction does not need to be invoked in this instance because in DropEarlyDate, only individual ctl_id items are removed. In the regular delete, the entire Part_no including all ctl_ins are deleted.

 g. The upload record and the update record only refer to the Part_no and not to the individual ctl_ids.

 h. Deleting a record takes place from the grid. If the user wants to delete a Part_no, the user looks at all the ctl_ids in a grid, depresses Delete, and all the items with that Part_no are deleted.

 i. CheckUserFunctions is the function used to determine the user’s highest permission level.

 (1) Functions for frmInterrProblemPart:

 (a) CheckForPendingActions: Performs an SQL for the part to be deleted to determine whether or not there is a record in Prob_part_upd for review. This function returns a true or a false.

 (b) DeletePart: This sub either removes the part number from the table or places a copy of the part number in the Prob_part_upd table, depending upon permission level. It is called by cmdDelete_Click.

 (c) GetPermission: Determines whether or not the user has authority to perform the maintenance task. Used to determine if the file is passed to the Upload table or the Update table.

 (d) LoadTheData: Loads and formats the data in the grid.

 (e) WriteUdate: Creates and writes the update record to Prob_part_upd. Only one record is written, the control IDs are lost at this point. It is called by DeletPart.

 (f) WriteUploadRecord: Creates and writes the upload record(s). There may be multiple because each part may have more that one Control ID.

 (2) Functions for frmInterrProblemPartEntry:

 (a) DropEarlyDate: Deletes the Problem Part Records if there are more then eight control IDs for a control number. It is called by GatherData. Only the eight most recent parts are retained.

 (b) GatherData: Gets the data to be used in the frmInterrProblemPart grid.

 (c) LoadProblemPart: This is called from the Evaluation process – frmSubPartsRevl form.

INCLUDED FORMS:

 frmInterrProblemPart

 frmInterrProblemPartEntry

3.5.12 SERVICE ACTIVITY CODE (RESERVED)

3.6 INTERROGATIONS (RESERVED)

3.7 GFB EVALUATIONS (RESERVED)

3.7.1 GFB CONTRACTOR INPUT REVIEW

SCREENS:

 FrmGFBInput – GFB Contractor Input Review

 FrmGFBDetail - GFB Contractor Input Detail

Screen 1 - FrmGFBInput

 This screen is called by the menu. The calling program runs GetData to determine whether there are any GFB Input notification records (gov_furn_baseln). If there are records, they are loaded into a grid, which allows users to choose the GFB Input notification record to process.

 a. OK – The user selects a record by either double-clicking on the row of the grid, or entering a number into the text box ENTER NUMBER TO SELECT:. The program selects all fields for the selected record, based on the field fr_contr_cd, sets the text values for the next screen, and calls the Detail Screen – frmGFBDetail.

 b. Approve All – If the user selects the Approve All button, the program processes all records on the grid, deleting each one, and creating an upload record for each row. Each item is deleted from the grid as it is deleted from the table.

 c. Delete – If the user selects the Delete button, the GFB Input notification record is deleted and the row is deleted from the grid.

 Cancel – Exits to the menu.

Screen 2 - FrmGFBDetail

 a. This screen shows the detail information from the GFB Input table (gov_furn_baseln).

 b. Cancel – When the user clicks on the Cancel button, they are returned to the GFB Input Review screen.

3.8 TABLE MONITORS (RESERVED)

3.8.1 IMPAC MONITOR SCREENS (RESERVED)

3.8.2 CAGE MONITOR REVIEW (RESERVED)

3.8.3 GIDEP MONITOR REVIEW (RESERVED)

3.9 UPDATES (RESERVED)

3.10 ROUTE OR DELETE EVALUATIONS (RESERVED)

3.11 USER FUNCTIONS (RESERVED)

II-1-1-94
II-1-1-93

