

TOPPLY CHAN MANAGEMENT ON

Lead-Free (Pb-free) Electronics & Finishes

29 April 2014

AFMC AFSC 448th
415 SCMS/GUMBB
DSN 586-1442

Overview

- Introduction
- Lead-free the issue
- Lead-free Actual Cases
- Way Forward
- Risk Mitigation Improvements
- Summary

Introduction

AFSC OGDEN COMPLEX

What if your repair line discovered Pb-free parts in bins?

Aircraft Control Amp

Introduction

What if your repair line discovered whiskers?

Aircraft Fuel Quantity Indicator

Principle #1 – Not just Solder

AFSC OGDEN COMPLEX

Soldering

■ Electronics has established reliability baseline with SnPb solder (63% Tin, 37% Lead)

■ There is no direct replacement or substitution that "gets the lead out"

Electronic Components

Lead-free electronic components are unavoidable

Surface Plating

Pure tin plating is attractive, low cost, and environment "green"
 Not Just Solder

Principle #2 - Not just Whiskers

AFSC OGDEN COMPLEX

Tin Whiskers – random in nature

Cross Contamination – material mixing in soldering

Solder Temperatures – collateral heating (over-heating)

Pb-free Solder Joints – "New" compared to Tin-Lead (SnPb)

Not Just Whiskers

Not Just Solder or Whiskers

AFSC OGDEN COMPLEX

Risk Assessment for Pb-free Processes per LSA SOLD-08-07

Frequency of Occurrence is X Times the SnPb Baseline

LSA = Lead (not Pb but lead as in leader) Standardization Activity

Solder Temperatures

AFSC OGDEN COMPLEX

ANSYS

JUL 16 2006

Processing Temperatures Phenomenon

NODAL SOLUTION

TIME=9.004

SMN =29.715

Thermal Simulation of 208 PQFP

Blue =
$$30 - 50 \, {}^{\circ}\text{C}$$

$$Red = 225 - 250 \, {}^{\circ}C$$

Soldering Iron set to 315 °C (600 °F) Solder Pot set to 245 °C (473 °F)

Lead-free Actual Cases at Hill AFB

Know What To Look For

AFSC OGDEN C OMPLEX

Become familiar with these designations for **ELECTRONIC COMPONENTS** (J-STD-609)

- Traditional Tin-Lead Construction/Component Leg Finish
 - e0 contains lead (> 0.1 wt %), traditional Sn/Pb solder tinning
- These Designations are Lead-free (Pb-free)
 - e1 Sn/Ag/Cu (shall not be included in category e2)
 - e2 Sn alloys with no Bi or Zn, excluding Sn/Ag/Cu
 - e3 Sn
 - e4 Precious metal (Ag, Au, Ni/Pd, Ni/Pd/Au) [no Sn]
 - e5 Sn/Zn, Sn/Zn/X (no Bi)
 - e6 Contains Bi
 - e7 Low temperature solder containing Indium (no Bi)
- e8 and e9 symbols are unassigned

Know Your Repair Process and Component Inventory

Hill AFB Affected Product – Resolved through Risk Analysis

AFSC OGDEN COMPLEX

Hill AFB Aircraft Fuel Quantity Indicator - Whiskers

AFSC OGDEN COMPLEX

Aircraft Fuel
Quantity Indicator

Product designed/manufactured prior to 2000

"Spring" part is not an electrical part

Example of whisker mitigation technique effectiveness – solder dip

Hill AFB Aircraft Alpha Computer – Critical Safety Item Pre-RoHS Parts in Inventory

13

AFSC OGDEN C OMPLEX

225V 400ma Diode JANTXV1N645-1 NSN 5961-01-071-6704

Potentially Fused Tin (Sn)

Pb below 2% on 2 samples

Example where legacy construction is lead-free Lead-free/RoHS transition began ~2003 and these parts are manufactured 1998

Fusing (reflow above 232°C where the tin fully melts) within a short time frame after plating – mitigates whiskers

Yesterday's traditional construction, Today's lead-free e3, JESD Class 2

Gold Leads

Digital Microcircuit Buffer/Driver IC 55462H 55462HMQB NSN 5962-01-123-3164

71% Gold Legs 0.2% Lead (Pb)

Therefore Pb-free

Example where legacy construction is lead-free

DLA Case # DSCC-FM-09-15764 to add supplier – no issue with 339

Yesterday's traditional construction, Today's lead-free e4, JESD Class 2

Conscious Lead-free Approval through DLA 339

500V 3 A Switch 2 through 12 position 0.28" through 1.28" NSN 5930-01-7015

component legs

AFSC OGDEN C OMPLEX

Terminals: Copper alloy, matte tin plated over nickel barrier (per JESD 201).

Only available in lead-free

Supplier Grayhill (distributor not manufacturer)

Engineering Authority Approved with full awareness

Satellite Ground Station Application

Case Number: DSCC-FM-11-02139 October 2010

Lead-free Part Meets Spec

AFSC OGDEN C OMPLEX

20V 150ma Diode per drawing 033549 (last dwg Rev 1991) NSN 5961-01-105-4854

e4 - Ag, Au, or Ni/Pd instead of tin

Spec does not prohibit lead-free

Dwg 033549 "3.3.1 Lead Finish: Leads shall be solderable (tinned or gold plated)"

DLA: "No 339s or engineering authority activity that accepted this part"

MXW Technician: "Cannot purge/QDR the Integrated Parts Vendor bins, because we do not have anything in writing that says we can't use lead free"

Supplier Solder Dipped Lead-free to Meet Spec

150V Tantalum Electrolytic Capacitor per M39006/01 NSN 5910-00-009-6732

DLA Case # DSCC-FM-10-42179

AFSC OGDEN COMPLEX

e1 - Sn/Ag/Cu 96.5 Sn 3.0Ag 0.5Cu

Contractor dipping In SnPb bath before delivery mismarked

Part approved through DLA 339 and Pb-free not part of decision

M39006/01

3.4.3 Pure tin. The use of pure tin, as an underplate or final finish, is prohibited both internally and externally. Tin content of capacitor and solder shall not exceed 97%, by mass. Tin shall be alloyed with a minimum of 3% lead.

6.11 Tin whisker growth. The use of alloys with tin content greater than 97%, by mass, may exhibit tin whisker growth problems after manufacture.

Manufacturer's Data Sheet Does Not Show an e1 Option

600V 1 A Diode 1N5061 80131-RELEASE5452 0.032 leg diameter NSN 5961-00-111-4795

Potential replacement 200V 3 A Diode JANTX1N5417 0.040 leg diameter NSN 5961-00-403-4545

AFSC OGDEN C OMPLEX

e1 - Sn/Ag/Cu 96.5 Sn 3.0Ag 0.5Cu

Approved as a replacement by OC-ALC (422nd) & WR-ALC (407th)

Specification may not prohibit lead-free

DLA Case # DSCC-FM-10-17097

"DLAD Clause 52.211-9063, 'Unit Package Marking Requirement for Component Lead Finish', Applies"

Part is Vishay per DLA but Vishay does not show an e1 version per datasheet, 29 samples measure e0

80131-RELEASE5452 Specification (1967) – "no fragile whiskers"

Latest Vishay datasheet - E3 suffix meets JESD 201 class 1A whisker test, HE3 suffix meets JESD 201 class 2 whisker test

An item authorized for procurement as a result of a formal item reduction study & accepted as a replacement

Air Force Way Forward

AFSC OGDEN COMPLEX

- Lead-free components are unavoidable Prohibiting lead-free is unrealistic and not effective
- Lead-free is not a brand new threat, increased threat
 - "Legacy" Lead-free parts have been in Air Force processes for over 20 years (e.g., fused tin, gold leads)
- Depot Solder is traditional tin-lead (63Sn37Pb)
- Discovery relies on the depot technician all trained but skills/enforcement vary

 Estimated Lead-free Inventory at Hill AFB is 5% (not including "legacy" lead-free)

Follow Navy Lead

AFSC OGDEN COMPLEX

- Naval Surface Warfare Center Instruction NSWCCRANEINST 4855.18C
 - Guides to solder components with pure tin finishes with SnPb solder, if ...
 - ...approval obtained from the engineering authority and program manager
 - Engineering authority approval = risk analysis
- Air Force Activity
 - Adopting Navy soldering TO TO 00-25-234 (AF) converted to 00-25-259 (Navy)
 - Air Force Lead-free Electronics Team (LFET)

Navy Instruction NSWCCRANEINST 4855.18C document, table 1

AFSC OGDEN COMPLEX

Risk Management for Pb-free Solder Technology Repair Processes 1 and 3

	SnPb	1	2	3	4	5	5a
Solder	Sn37Pb	Sn37Pb	Sn37Pb	Sn37Pb	Sn37Pb	Pb-free	Pb-free
Component Finish	>3%Pb	Non-Sn	HSD	Sn	Sn	Pb-free	Pb-free
Board Finish	>3%Pb	Non-Sn or >3%Pb	Non-Sn or >3%Pb	Non-Sn or >3%Pb	Sn	Pb-free	Pb-free
Tin Whiskers	Avoids the risk	Avoids the risk	Mitigates the risk	Mitigates the risk	Mitigates the risk	Mitigates the risk	Accepts the risk
Solder Joint Integrity	Avoids the risk	Avoids the risk	Avoids the risk	Avoids the risk	Avoids the risk	Accepts the risk	Accepts the risk
Processing Temperatures	Avoids the risk	Avoids the risk	Avoids the risk	Avoids the risk	Avoids the risk	Accepts the risk	Accepts the risk
Component Reliability	Avoids the risk	Avoids the risk	Accepts the risk	Avoids the risk	Avoids the risk	Avoids the risk	Avoids the risk

What the Air Force could be doing

Risk Assessment

AFSC OGDEN COMPLEX

Risk Assessment for Pb-free Processes per LSA SOLD-08-07

Frequency of Occurrence is X Times the SnPb Baseline

LSA = Lead (not Pb but lead as in leader) Standardization Activity

Get Control

AFSC OGDEN COMPLEX

- Assign a Control Level per SAE/GEIA-STD-0005-2
 - Different based on criticality (aircraft and ground systems may have different control levels)
 - Control Level 2C for Aircraft avionics is a starting place
- Know your Weapon System Specs that prohibit/limit Pb-free
 - MIL-STD-1276, MIL-PRF-38535, MIL-STD-1796A, Industry standard JESD 201, etc
- Notify suppliers of designated Control Level
 - share responsibility and supplier control to contractors buys and repairs
- Develop a Pb-free Control Plan (LFCP) Supplier Management, 339 processes, 202 processes

Get Control

Example Control Level Assignments

Subsystem Name	Flight/Ground	Critical Safety Items? Yes/No	GEIA-STD-0005-2 Control Levels	Comments
Aircraft Structure	Flight	Yes – 8 items	Level 2C	Associated electronics and surface plating and finishes shall not be pure tin
Aircraft Avionics – Critical Safety Items (CSI)	Flight	Yes – 8 items	Level 2C	CSIs have a higher control level
Aircraft Avionics – non-CSI	Flight	No – 8 items	Level 2B	Non-CSIs control level can be below CSI's control level
Aircraft Support Equipment	Ground	No	Level 2A	Reliability to be monitored
Repair Source automatic test equipment	Ground	No	Level 1	Many components are commercial-off-the-shelf
Commercial off-the-shelf (COTS)	Flight/Ground		Procured Lead-free (Level 1)?	

Depot Repair Risk Mitigation Implementation

AFSC OGDEN C OMPLEX

- Mitigation 1 202 for Risk assessment from engineering authority
- Mitigation 2 Do not use lead-free solder, stay with traditional tin-lead (63Sn37Pb) solder
- Mitigation 3 Solder dip electronic component prior to soldering (coverage of entire lead up to package is difficult)
- Mitigation 4 Use conformal coat (disadvantage on next repair cycle)

Summary

- Prohibiting lead-free keeps status quo and saves engineering effort (an objective that is unrealistic)
- Unavoidable lead-free use requires awareness of issues and risk analysis
- Highly likely that your legacy system is being repaired with lead-free components (including fused tin) go find out
- Commit to an office position on Lead-free Adopt a method of control and monitoring
- Delegate responsibility and control to suppliers buy and repair

Backup Slides

Results of Industry and DoD Working Groups

AFSC OGDEN COMPLEX

Industry Documents - GEIA to TechAmerica to SAE

- ANSI/GEIA-STD-0005-1 Specifies a Pb-free Control Plan
- ANSI/GEIA-STD-0005-2 Tin Whisker Mitigation Plans
- ANSI/GEIA-STD-0005-3 Default reliability testing
- ANSI/GEIA-STD-0006 (draft) Hot Solder Dip Component Leads
- ANSI/GEIA-HB-0005-1 Program guidelines to Pb-free transition
- ANSI/GEIA-HB-0005-2 Tech Guidelines for Pb-free/mixed solder
- ANSI/GEIA-HB-0005-3 (draft) Repair and maintenance of Pb-free
- ANSI/GEIA-HB-0005-4 (draft) Quantifying effects of Pb-free
- JEDEC standard JESD 22A121 (iNEMI) Tin Whisker Test Methods
- JEDEC standard JESD 201 (iNEMI) Tin Whisker Acceptance Criteria

DoD Documents

- LSA SOLD-08-01 DoD Soldering Technologies Working Group
- LSA SOLD-08-02 Manage by avoidance, inspection, and control plans
- LSA SOLD-08-03 Tech guidance and control plan for rework and repair
- LSA SOLD-08-04 USDoD Lead-Free Control Plan (templates -05/-06)
- LSA SOLD-08-07 Risk Management
- Naval Surface Warfare Center Instruction NSWCCRANEINST 4855.18C

Hill X-Ray Fluorescence (XRF) Equipment

AFSC OGDEN C OMPLEX

For Material Composition Analysis

Back-Up

Acronyms

- AIA Aerospace Industries Association
- AMC Avionics Maintenance Conference
- CALCE Center for Advanced Life Cycle Engineering
- GEIA Government Engineering and Information Technology Association
- IEC International Electrotechnical Commission (Standards Publisher)
- JSRC Joint Service Review Committee
- LEAP Lead-free Electronics in Aerospace Project
- LFCP Lead Free Control Plan
- LFET USAF Lead Free Electronics Team
- LFWG Hill Lead Free Working Group
- LSA Lead (not Pb but lead as in leader) Standardization Activity
- Pb Chemical element symbol of lead
- PERM Pb-free Electronics Risk Management
- STWG DoD Soldering Technologies Working Group